50 research outputs found
The 72-Hour WEBT Microvariability Observation of Blazar S5 0716+714 in 2009
Context. The international whole earth blazar telescope (WEBT) consortium
planned and carried out three days of intensive micro-variability observations
of S5 0716+714 from February 22, 2009 to February 25, 2009. This object was
chosen due to its bright apparent magnitude range, its high declination, and
its very large duty cycle for micro-variations. Aims. We report here on the
long continuous optical micro-variability light curve of 0716+714 obtained
during the multi-site observing campaign during which the Blazar showed almost
constant variability over a 0.5 magnitude range. The resulting light curve is
presented here for the first time. Observations from participating
observatories were corrected for instrumental differences and combined to
construct the overall smoothed light curve. Methods. Thirty-six observatories
in sixteen countries participated in this continuous monitoring program and
twenty of them submitted data for compilation into a continuous light curve.
The light curve was analyzed using several techniques including Fourier
transform, Wavelet and noise analysis techniques. Those results led us to model
the light curve by attributing the variations to a series of synchrotron
pulses. Results. We have interpreted the observed microvariations in this
extended light curve in terms of a new model consisting of individual
stochastic pulses due to cells in a turbulent jet which are energized by a
passing shock and cool by means of synchrotron emission. We obtained an
excellent fit to the 72-hour light curve with the synchrotron pulse model
Multiband optical variability of the blazar OJ 287 during its outbursts in 2015 -- 2016
We present recent optical photometric observations of the blazar OJ 287 taken
during September 2015 -- May 2016. Our intense observations of the blazar
started in November 2015 and continued until May 2016 and included detection of
the large optical outburst in December 2016 that was predicted using the binary
black hole model for OJ 287. For our observing campaign, we used a total of 9
ground based optical telescopes of which one is in Japan, one is in India,
three are in Bulgaria, one is in Serbia, one is in Georgia, and two are in the
USA. These observations were carried out in 102 nights with a total of ~ 1000
image frames in BVRI bands, though the majority were in the R band. We detected
a second comparably strong flare in March 2016. In addition, we investigated
multi-band flux variations, colour variations, and spectral changes in the
blazar on diverse timescales as they are useful in understanding the emission
mechanisms. We briefly discuss the possible physical mechanisms most likely
responsible for the observed flux, colour and spectral variability.Comment: 11 pages, 6 figures, 4 tables; Accepted for publication in MNRA
The brightest gamma-ray flaring blazar in the sky: AGILE and multi-wavelength observations of 3C 454.3 during November 2010
Since 2005, the blazar 3C 454.3 has shown remarkable flaring activity at all
frequencies, and during the last four years it has exhibited more than one
gamma-ray flare per year, becoming the most active gamma-ray blazar in the sky.
We present for the first time the multi-wavelength AGILE, SWIFT, INTEGRAL, and
GASP-WEBT data collected in order to explain the extraordinary gamma-ray flare
of 3C 454.3 which occurred in November 2010. On 2010 November 20 (MJD 55520),
3C 454.3 reached a peak flux (E>100 MeV) of F_gamma(p) = (6.8+-1.0)E-5 ph/cm2/s
on a time scale of about 12 hours, more than a factor of 6 higher than the flux
of the brightest steady gamma-ray source, the Vela pulsar, and more than a
factor of 3 brighter than its previous super-flare on 2009 December 2-3. The
multi-wavelength data make a thorough study of the present event possible: the
comparison with the previous outbursts indicates a close similarity to the one
that occurred in 2009. By comparing the broadband emission before, during, and
after the gamma-ray flare, we find that the radio, optical and X-ray emission
varies within a factor 2-3, whereas the gamma-ray flux by a factor of 10. This
remarkable behavior is modeled by an external Compton component driven by a
substantial local enhancement of soft seed photons.Comment: Accepted for publication in ApJ Letters. 18 Pages, 4 Figures, 1 Tabl
The WEBT campaign on the BL Lac object PG 1553+113 in 2013. An analysis of the enigmatic synchrotron emission
A multifrequency campaign on the BL Lac object PG 1553+113 was organized by the Whole Earth Blazar Telescope (WEBT) in 2013 April-August, involving 19 optical, two near-IR, and three radio telescopes. The aim was to study the source behaviour at low energies during and around the high-energy observations by the Major Atmospheric Gamma-ray Imaging Cherenkov telescopes in April-July. We also analyse the UV and X-ray data acquired by the Swift and XMM-Newton satellites in the same period. The WEBT and satellite observations allow us to detail the synchrotron emission bump in the source spectral energy distribution (SED). In the optical, we found a general bluer-when-brighter trend. The X-ray spectrum remained stable during 2013, but a comparison with previous observations suggests that it becomes harder when the X-ray flux increases. The long XMM-Newton exposure reveals a curved X-ray spectrum. In the SED, the XMM-Newton data show a hard near-UV spectrum, while Swift data display a softer shape that is confirmed by previous Hubble Space Telescope/Cosmic Origins Spectrograph and International Ultraviolet Explorer observations. Polynomial fits to the optical-X-ray SED show that the synchrotron peak likely lies in the 4-30eV energy range, with a general shift towards higher frequencies for increasing X-ray brightness. However, the UV and X-ray spectra do not connect smoothly. Possible interpretations include: (i) orientation effects, (ii) additional absorption, (iii) multiple emission components, and (iv) a peculiar energy distribution of relativistic electrons. We discuss the first possibility in terms of an inhomogeneous helical jet mode
The 72-h WEBT microvariability observation of blazar S5 0716 + 714 in 2009
Context. The international Whole Earth Blazar Telescope (WEBT) consortium planned and carried out three days of intensive micro-variability observations of S5 0716 + 714 from February 22, 2009 to February 25, 2009. This object was chosen due to its bright apparent magnitude range, its high declination, and its very large duty cycle for micro-variations. Aims. We report here on the long continuous optical micro-variability light curve of 0716+714 obtained during the multi-site observing campaign during which the Blazar showed almost constant variability over a 0.5 mag range. The resulting light curve is presented here for the first time. Observations from participating observatories were corrected for instrumental differences and combined to construct the overall smoothed light curve. Methods. Thirty-six observatories in sixteen countries participated in this continuous monitoring program and twenty of them submitted data for compilation into a continuous light curve. The light curve was analyzed using several techniques including Fourier transform, Wavelet and noise analysis techniques. Those results led us to model the light curve by attributing the variations to a series of synchrotron pulses. Results. We have interpreted the observed microvariations in this extended light curve in terms of a new model consisting of individual stochastic pulses due to cells in a turbulent jet which are energized by a passing shock and cool by means of synchrotron emission. We obtained an excellent fit to the 72-hour light curve with the synchrotron pulse model. © ESO, 2013
The extreme HBL behaviour of Markarian 501 during 2012
A multiwavelength campaign was organized to take place between March and July of 2012. Excellent temporal coverage was obtained with more than 25 instruments, including the MAGIC, FACT and VERITAS Cherenkov telescopes, the instruments on board the Swift and Fermi spacecraft, and the telescopes operated by the GASP-WEBT collaboration. Mrk 501 showed a very high energy (VHE) gamma-ray flux above 0.2 TeV of 0.5 times the Crab Nebula flux (CU) for most of the campaign. The highest activity occurred on 2012 June 9, when the VHE flux was 3 CU, and the peak of the high-energy spectral component was found to be at 2 TeV. This study reports very hard X-ray spectra, and the hardest VHE spectra measured to date for Mrk 501. The fractional variability was found to increase with energy, with the highest variability occurring at VHE, and a significant correlation between the X-ray and VHE bands. The unprecedentedly hard X-ray and VHE spectra measured imply that their low- and high-energy components peaked above 5 keV and 0.5 TeV, respectively, during a large fraction of the observing campaign, and hence that Mrk 501 behaved like an extreme high-frequency- peaked blazar (EHBL) throughout the 2012 observing season. This suggests that being an EHBL may not be a permanent characteristic of a blazar, but rather a state which may change over time. The one-zone synchrotron self-Compton (SSC) scenario can successfully describe the segments of the SED where most energy is emitted, with a significant correlation between the electron energy density and the VHE gamma-ray activity, suggesting that most of the variability may be explained by the injection of high-energy electrons. The one-zone SSC scenario used reproduces the behaviour seen between the measured X-ray and VHE gamma-ray fluxes, and predicts that the correlation becomes stronger with increasing energy of the X-rays
The variability patterns of the TeV blazar PG 1553+113 from a decade of MAGIC and multi-band observations
PG 1553+113 is one of the few blazars with a convincing quasi-periodic
emission in the gamma-ray band. The source is also a very high-energy (VHE;
>100 GeV) gamma-ray emitter. To better understand its properties and identify
the underlying physical processes driving its variability, the MAGIC
Collaboration initiated a multiyear, multiwavelength monitoring campaign in
2015 involving the OVRO 40-m and Medicina radio telescopes, REM, KVA, and the
MAGIC telescopes, Swift and Fermi satellites, and the WEBT network. The
analysis presented in this paper uses data until 2017 and focuses on the
characterization of the variability. The gamma-ray data show a (hint of a)
periodic signal compatible with literature, but the X-ray and VHE gamma-ray
data do not show statistical evidence for a periodic signal. In other bands,
the data are compatible with the gamma-ray period, but with a relatively high
p-value. The complex connection between the low and high-energy emission and
the non-monochromatic modulation and changes in flux suggests that a simple
one-zone model is unable to explain all the variability. Instead, a model
including a periodic component along with multiple emission zones is required.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Society. 19 pages, 9 figures. Corresponding authors: Elisa Prandini, Antonio
Stamerra, Talvikki Hovatt
The variability patterns of the TeV blazar PG 1553 + 113 from a decade of MAGIC and multiband observations
PG 1553 + 113 is one of the few blazars with a convincing quasi-periodic emission in the gamma-ray band. The source is also a very high energy (VHE; >100 GeV) gamma-ray emitter. To better understand its properties and identify the underlying physical processes driving its variability, the MAGIC Collaboration initiated a multiyear, multiwavelength monitoring campaign in 2015 involving the OVRO 40-m and Medicina radio telescopes, REM, KVA, and the MAGIC telescopes, Swift and Fermi satellites, and the WEBT network. The analysis presented in this paper uses data until 2017 and focuses on the characterization of the variability. The gamma-ray data show a (hint of a) periodic signal compatible with literature, but the X-ray and VHE gamma-ray data do not show statistical evidence for a periodic signal. In other bands, the data are compatible with the gamma-ray period, but with a relatively high p-value. The complex connection between the low- and high-energy emission and the non-monochromatic modulation and changes in flux suggests that a simple one-zone model is unable to explain all the variability. Instead, a model including a periodic component along with multiple emission zones is required
Multimessenger Characterization of Markarian 501 during Historically Low X-Ray and γ-Ray Activity
We study the broadband emission of Mrk 501 using multiwavelength observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi's Large Area Telescope (LAT), NuSTAR, Swift, GASP-WEBT, and the Owens Valley Radio Observatory. Mrk 501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Nonetheless, significant flux variations are detected at all wave bands, with the highest occurring at X-rays and very-high-energy (VHE) 3-rays. A significant correlation (>3σ) between X-rays and VHE 3-rays is measured, supporting leptonic scenarios to explain the variable parts of the emission, also during low activity. This is further supported when we extend our data from 2008 to 2020, and identify, for the first time, significant correlations between the Swift X-Ray Telescope and Fermi-LAT. We additionally find correlations between high-energy 3-rays and radio, with the radio lagging by more than 100 days, placing the 3-ray emission zone upstream of the radio-bright regions in the jet. Furthermore, Mrk 501 showed a historically low activity in X-rays and VHE 3-rays from mid-2017 to mid-2019 with a stable VHE flux (>0.2 TeV) of 5% the emission of the Crab Nebula. The broadband spectral energy distribution (SED) of this 2 yr long low state, the potential baseline emission of Mrk 501, can be characterized with one-zone leptonic models, and with (lepto)-hadronic models fulfilling neutrino flux constraints from IceCube. We explore the time evolution of the SED toward the low state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock. © 2023. The Author(s). Published by the American Astronomical Society