110 research outputs found

    Procyon-A and Eta-Bootis: Observational Frequencies Analyzed by the Local-Wave Formalism

    Full text link
    In the present analysis of Procyon-A and Eta-Bootis, we use the local-wave formalism which, despite its lack of precision inherent to any semi-analytical method, uses directly the model profile without any modification when calculating the acoustic mode eigenfrequencies. These two solar-like stars present steep variations toward the center due to the convective core stratification, and toward the surface due to the very thin convective zone. Based on different boundary conditions, the frequencies obtained with this formalism are different from that of the classical numerical calculation. We point out that (1) the frequencies calculated with the local-wave formalism seem to agree better with observational ones. All the frequencies detected with a good confident level including those classified as 'noise' find an identification, (2) some frequencies can be clearly identified here as indications of the core limit.Comment: SOHO 18 / GONG 2006 / HELAS I Meetin

    Standard Solar models in the Light of New Helioseismic Constraints II. Mixing Below the Convective Zone

    Full text link
    In previous work, we have shown that recent updated standard solar models cannot reproduce the radial profile of the sound speed at the base of the convective zone (CZ) and fail to predict the Li7 depletion. In parallel, helioseismology has shown that the transition from differential rotation in the CZ to almost uniform rotation in the radiative solar interior occurs in a shallow layer called the tachocline. This layer is presumably the seat of large scale circulation and of turbulent motions. Here, we introduce a macroscopic transport term in the structure equations, which is based on a hydrodynamical description of the tachocline proposed by Spiegel and Zahn, and we calculate the mixing induced within this layer. We discuss the influence of different parameters that represent the tachocline thickness, the Brunt-Vaissala frequency at the base of the CZ, and the time dependence of this mixing process along the Sun's evolution. We show that the introduction of such a process inhibits the microscopic diffusion by about 25%. Starting from models including a pre-main sequence evolution, we obtain: a) a good agreement with the observed photospheric chemical abundance of light elements such as He3, He4, Li7 and Be9, b) a smooth composition gradient at the base of the CZ, and c) a significant improvement of the sound speed square difference between the seismic sun and the models in this transition region, when we allow the phostospheric heavy element abundance to adjust, within the observational incertitude, due to the action of this mixing process. The impact on neutrino predictions is also discussed.Comment: 15 pages, 7 figures, to be published in ApJ (used emulateapj style for latex2e). New email for A. S. Brun: [email protected]

    Cooling Flows of Self-Gravitating, Rotating, Viscous Systems

    Get PDF
    We obtain self-similar solutions that describe the dynamics of a self-gravitating, rotating, viscous system. We use simplifying assumptions; but explicitly include viscosity and the cooling due to the dissipation of energy. By assuming that the turbulent dissipation of energy is as power law of the density and the speed v_{rms} and for a power-law dependence of viscosity on the density, pressure, and rotational velocity, we investigate turbulent cooling flows. It has been shown that for the cylindrically and the spherically cooling flows the similarity indices are the same, and they depend only on the exponents of the dissipation rate and the viscosity model. Depending on the values of the exponents, which the mechanisms of the dissipation and viscosity determine them, we may have solutions with different general physical properties. The conservation of the total mass and the angular momentum of the system strongly depends on the mechanisms of energy dissipation and the viscosity model.Comment: 19 pages, 5 figures, To appear in ApJ (scheduled for the v574, July 20, 2002

    Detection of periodic signatures in the solar power spectrum. On the track of l=1 gravity modes

    Get PDF
    In the present work we show robust indications of the existence of g modes in the Sun using 10 years of GOLF data. The present analysis is based on the exploitation of the collective properties of the predicted low-frequency (25 to 140 microHz) g modes: their asymptotic nature, which implies a quasi equidistant separation of their periods for a given angular degree (l). The Power Spectrum (PS) of the Power Spectrum Density (PSD), reveals a significant structure indicating the presence of features (peaks) in the PSD with near equidistant periods corresponding to l=1 modes in the range n=-4 to n=-26. The study of its statistical significance of this feature was fully undertaken and complemented with Monte Carlo simulations. This structure has a confidence level better than 99.86% not to be due to pure noise. Furthermore, a detailed study of this structure suggests that the gravity modes have a much more complex structure than the one initially expected (line-widths, magnetic splittings...). Compared to the latest solar models, the obtained results tend to favor a solar core rotating significantly faster than the rest of the radiative zone. In the framework of the Phoebus group, we have also applied the same methodology to other helioseismology instruments on board SoHO and ground based networks.Comment: Proceedings of the SOHO-18/GONG2006/HELAS I: Beyond the spherical Su

    Simulations of turbulent convection in rotating young solar-like stars: Differential rotation and meridional circulation

    Full text link
    We present the results of three-dimensional simulations of the deep convective envelope of a young (10 Myr) one-solar-mass star, obtained with the Anelastic Spherical Harmonic code. Since young stars are known to be faster rotators than their main sequence counterparts, we have systematically studied the impact of the stellar rotation speed, by considering stars spinning up to five times as fast as the Sun. The aim of these nonlinear models is to understand the complex interactions between convection and rotation. We discuss the influence of the turbulence level and of the rotation rate on the intensity and the topology of the mean flows. For all of the computed models, we find a solar-type superficial differential rotation, with an equatorial acceleration, and meridional circulation that exhibits a multicellular structure. Even if the differential rotation contrast decreases only marginally for high rotation rates, the meridional circulation intensity clearly weakens according to our simulations. We have also shown that, for Taylor numbers above a certain threshold (Ta>10^9), the convection can develop a vacillating behavior. Since simulations with high turbulence levels and rotation rates exhibit strongly cylindrical internal rotation profiles, we have considered the influence of baroclinic effects at the base of the convective envelope of these young Suns, to see whether such effect can modify the otherwise near cylindrical profiles to produce more conical, solar-like profiles.Comment: 32 pages, 18 figures, 2 tables, to appear in Ap

    Non equilibrium thermodynamics and cosmological pancakes formation

    Full text link
    We investigate the influence of non equilibrium thermodynamics on cosmological structure formation. In this paper, we consider the collapse of planar perturbations usually called "Zel'dovich pancakes". We have developed for that purpose a new two fluids (gas and dark matter) hydrodynamical code, with three different thermodynamical species: electrons, ions and neutral particles (T_e\ne T_i \ne T_n). We describe in details the complex structure of accretion shock waves. We include several relevant processes for a low density, high temperature, collisional plasma such as non-equilibrium chemical reactions, cooling, shock heating, thermal energy equipartition between electrons, ions and neutral particles and electronic conduction. We find two different regions in the pancake structure: a thermal precursor ahead of the compression front and an equipartition wave after the compression front where electrons and ions temperatures differ significantly. This complex structure may have two interesting consequences: pre-heating of unshocked regions in the vicinity of massive X-ray clusters and ions and electrons temperatures differences in the outer regions of X-rays clusters.Comment: 30 pages, including 8 figures, accepted for publication in The Astrophysical Journa

    Young stellar object jet models: From theory to synthetic observations

    Get PDF
    Astronomical observations, analytical solutions and numerical simulations have provided the building blocks to formulate the current theory of young stellar object jets. Although each approach has made great progress independently, it is only during the last decade that significant efforts are being made to bring the separate pieces together. Building on previous work that combined analytical solutions and numerical simulations, we apply a sophisticated cooling function to incorporate optically thin energy losses in the dynamics. On the one hand, this allows a self-consistent treatment of the jet evolution and on the other, it provides the necessary data to generate synthetic emission maps. Firstly, analytical disk and stellar outflow solutions are properly combined to initialize numerical two-component jet models inside the computational box. Secondly, magneto-hydrodynamical simulations are performed in 2.5D, following properly the ionization and recombination of a maximum of 2929 ions. Finally, the outputs are post-processed to produce artificial observational data. The first two-component jet simulations, based on analytical models, that include ionization and optically thin radiation losses demonstrate promising results for modeling specific young stellar object outflows. The generation of synthetic emission maps provides the link to observations, as well as the necessary feedback for the further improvement of the available models.Comment: accepted for publication A&A, 20 pages, 11 figure

    Advances in secular magnetohydrodynamics of stellar interiors dedicated to asteroseismic spatial missions

    Get PDF
    With the first light of COROT, the preparation of KEPLER and the future helioseismology spatial projects such as GOLF-NG, a coherent picture of the evolution of rotating stars from their birth to their death is needed. We describe here the modelling of the macroscopic transport of angular momentum and matter in stellar interiors that we have undertaken to reach this goal. First, we recall in detail the dynamical processes that are driving these mechanisms in rotating stars and the theoretical advances we have achieved. Then, we present our new results of numerical simulations which allow us to follow in 2D the secular hydrodynamics of rotating stars, assuming that anisotropic turbulence enforces a shellular rotation law. Finally, we show how this work is leading to a dynamical vision of the Hertzsprung-Russel diagram with the support of asteroseismology and helioseismology, seismic observables giving constraints on the modelling of the internal transport and mixing processes. In conclusion, we present the different processes that should be studied in the next future to improve our description of stellar radiation zones.Comment: 14 pages, 3 figures, Proceeding of the Joint HELAS and CoRoT/ESTA Workshop (20-23 November 2006, CAUP, Porto - Portugal
    corecore