24 research outputs found

    Neutrophil function in juvenile systemic Lupus Erythematosus (JSLE)

    Get PDF
    Objectives This project aimed to investigate the abnormal neutrophil functions in terms of cell survival, phagocytosis, ROS production and chemotaxis in JSLE patients. Furthermore, factors that could affect normal neutrophil functions (such as patient sera, recombinant human cytokines and commonly-used medications) were investigated. Methods Neutrophils and sera were isolated from whole blood of JSLE patients, healthy juvenile controls and healthy adult controls. Neutrophils from healthy adult controls were incubated with 10% serum from either JSLE patients or juvenile controls. Different recombinant cytokines or hydroxychloroquine were added in 10% human AB serum to neutrophils from healthy adult controls. Neutrophil apoptosis was measured using flow cytometry using annexin V-FITC and propidium iodide. The expression of proteins (Mcl-1, caspases 3,7,8 and 9) was measured by Western blotting. Phagocytosis and ROS production from neutrophils incubated with S. aureus opsonised with JSLE serum were quantified. Levels of cytokines in JSLE serum were measured using a Luminex assay and effects of GM-CSF and TNF-α on neutrophil apoptosis induced by JSLE serum were measured. JSLE neutrophil apoptosis was measured and Mcl-1 mRNA expression from JSLE neutrophils was quantified using real-time PCR. Phagocytosis, ROS production and neutrophil chemotaxis by JSLE neutrophils were investigated. Lastly, the effects of hydroxychloroquine on neutrophil functions were explored. Results The results showed that neutrophils incubated with inactive and active JSLE sera had significantly increased apoptosis at 6 h compared to control sera. Cleaved (active) forms of caspases 3,7,8 were identified in neutrophils incubated with inactive and active JSLE sera (that showed high rates of apoptosis) compared to control sera. Decreased bacterial opsonisation leading to defective phagocytosis and ROS production was observed in neutrophils incubated with S. aureus opsonised with JSLE serum. Serum analysis showed IL-8 levels in active JSLE patients were significantly increased. GM-CSF was the most potent cytokine in delaying apoptosis and significantly saved neutrophil apoptosis induced by JSLE serum. Low concentrations of TNF-α significantly protected neutrophils against apoptosis by down-regulating several genes and proteins involved in death receptor signaling pathway (e.g. TNFR, FADD, TRADD, caspases 8 and 10). No significant differences were detected in apoptosis, phagocytosis, ROS production and chemotaxis of neutrophils isolated from JSLE patients compared to healthy juvenile controls, and healthy adult neutrophils treated with hydroxychloroquine compared to untreated cells. Conclusions This study demonstrated that JSLE serum played an important role in regulating the functions of JSLE neutrophils. Factor(s) in JSLE serum induced neutrophil apoptosis and caused decreased bacterial opsonisation, leading to defective neutrophil phagocytosis and ROS production. Increased IL-8 levels could be used as an indicator of disease activity. GM-CSF was the most protective cytokine and overcame the pro-apoptotic effects of JSLE serum; thus, GM-CSF could potentially be used as an alternative treatment in JSLE patients. Effects of TNF-α are probably tissue-specific and the clinical application of TNF blockers in JSLE patients needs to be carefully considered. The functions of JSLE neutrophils were unimpaired and hydroxychloroquine showed no effects on neutrophil functions

    Defective Neutrophil Function in Patients with Sepsis is Mostly Restored by ex vivo Ascorbate Incubation

    Get PDF
    Background: Neutrophil function is essential for effective defence against bacterial infections but is defective in patients with sepsis. Ascorbate or vitamin C, which is low in the plasma of patients with sepsis, is stored inside human neutrophils and is essential for their normal function. Objective: This study aimed to determine if ascorbate treatment ex vivo improved neutrophil function in patients with sepsis. Patients and Methods: Human blood neutrophils were isolated from 20 patients with sepsis and 20 healthy age-matched controls. Neutrophils were incubated with or without ascorbate (1, 5, 10, 20 and 40 mM) for periods up to 2h. Chemotaxis was evaluated using a chemotactic chamber in response to the chemoattractant, fMLP. Phagocytosis (uptake of pHrodo red stained S. aureus) and apoptosis (annexin-V/propidium iodide staining) were measured by flow cytometry. Neutrophil extracellular trap (NET) formation was detected and quantified using DAPI, anti-myeloperoxidase and anti-neutrophil elastase immuno-fluorescence staining. Quantifluor detected the amount of dsDNA in NET supernatants, while quantitative PCR identified changes in expression of PADI4 gene. Results: Chemotactic and phagocytic activities were decreased in patients with sepsis but increased after treatment with the high concentrations of ascorbate. Apoptosis was increased in the sepsis patients but not altered by ascorbate treatment. Spontaneous NET formation was observed in patients with sepsis. A quantity of 1mM ascorbate decreased spontaneous NETosis to that of normal, healthy neutrophils, while high concentrations of ascorbate (> 10mM) further promoted NET formation. Conclusion: Dysregulated neutrophil function was observed in patients with sepsis which could contribute to disease pathology and outcomes. Exposure to ascorbate could reverse some of these changes in function. These novel discoveries raise the possibility that ascorbate treatment could be used as an adjunctive therapy that could result in improved neutrophil function during sepsis

    A Synergy Between Endotoxin and (1→3)-Beta-D-Glucan Enhanced Neutrophil Extracellular Traps in <i>Candida</i> Administered Dextran Sulfate Solution Induced Colitis in FcGRIIB-/- Lupus Mice, an Impact of Intestinal Fungi in Lupus.

    Get PDF
    IntroductionThe translocation of organismal molecules from gut into blood circulation might worsen the disease severity of lupus through the induction of neutrophil extracellular traps (NETs).MethodsAn impact of lipopolysaccharide (LPS) and (1→3)-β-D-glucan (BG), components of gut bacteria and fungi, respectively, on NETs formation, was explored in lupus models, Fc gamma receptor IIB deficiency (FcGRIIB-/-) and Pristane injection, using Candida-administered dextran sulfate solution induced colitis (Candida-DSS) model.ResultsSeverity of Candida-DSS in FcGRIIB-/- mice was more prominent than wild-type (WT) and Pristane mice as indicated by (i) colonic NETs using immunofluorescence of Ly6G, myeloperoxidase (MPO) and neutrophil elastase (NE) together with expression of PAD4 and IL-1β, (ii) colonic immunoglobulin (Ig) deposition (immunofluorescence), (iii) gut-leakage by FITC-dextran assay, endotoxemia and serum BG, (iv) systemic inflammation (neutrophilia, serum cytokines, serum dsDNA and anti-dsDNA) and (v) renal injury (proteinuria, glomerular NETs and Ig deposition).DiscussionThe formation of NETs in Candida-DSS mice was more severe than non-Candida-DSS mice and NETs in Candida-DSS were more profound in FcGRIIB-/- mice than Pristane mice. Prominent NETs in Candida-DSS FcGRIIB-/- mice might be due to the profound responses against LPS+BG in FcGRIIB-/- neutrophils compared with WT cells. These data implied an impact of the inhibitory FcGRIIB in NETs formation and an influence of gut fungi in lupus exacerbation. Hence, gut fungi in a DSS-induced gut-leakage lupus model enhanced colonic NETs that facilitated gut translocation of organismal molecules and synergistically exacerbated lupus activity

    Acute Kidney Injury Induced Lupus Exacerbation Through the Enhanced Neutrophil Extracellular Traps (and Apoptosis) in Fcgr2b Deficient Lupus Mice With Renal Ischemia Reperfusion Injury.

    Get PDF
    Renal ischemia is the most common cause of acute kidney injury (AKI) that might be exacerbate lupus activity through neutrophil extracellular traps (NETs) and apoptosis. Here, the renal ischemia reperfusion injury (I/R) was performed in Fc gamma receptor 2b deficient (Fcgr2b-/-) lupus mice and the in vitro experiments. At 24 h post-renal I/R injury, NETs in peripheral blood neutrophils and in kidneys were detected using myeloperoxidase (MPO), neutrophil elastase (NE) and citrullinated histone H3 (CitH3), as well as kidney apoptosis (activating caspase-3), which were prominent in Fcgr2b-/- mice more compared to wild-type (WT). After 120 h renal-I/R injury, renal NETs (using MPO and NE) were non-detectable, whereas glomerular immunoglobulin (Ig) deposition and serum anti-dsDNA were increased in Fcgr2b-/- mice. These results imply that renal NETs at 24 h post-renal I/R exacerbated the lupus nephritis at 120 h post-renal I/R injury in Fcgr2b-/- lupus mice. Furthermore, a Syk inhibitor attenuated NETs, that activated by phorbol myristate acetate (PMA; a NETs activator) or lipopolysaccharide (LPS; a potent inflammatory stimulator), more prominently in Fcgr2b-/- neutrophils than the WT cells as determined by dsDNA, PAD4 and MPO. In addition, the inhibitors against Syk and PAD4 attenuated lupus characteristics (serum creatinine, proteinuria, and anti-dsDNA) in Fcgr2b-/- mice at 120 h post-renal I/R injury. In conclusion, renal I/R in Fcgr2b-/- mice induced lupus exacerbation at 120 h post-I/R injury partly because Syk-enhanced renal NETs led to apoptosis-induced anti-dsDNA, which was attenuated by a Syk inhibitor

    Role of antimicrobial peptides in atopic dermatitis

    Get PDF
    Host defense peptides (HDPs) or antimicrobial peptides (AMPs) are short cationic amphipathic peptides of divergent sequences, which are part of the innate immune system and produced by various types of cells and tissues. The predominant role of HDPs is to respond to and protect humans against infection and inflammation. Common human HDPs include defensins, cathelicidin, psoriasin, dermcidin, and ribonucleases, but these peptides may be dysregulated in the skin of patients with atopic dermatitis (AD). Current evidence suggests that the antimicrobial properties and immunomodulatory effects of HDPs are involved in AD pathogenesis, making HDPs research a promising area for predicting disease severity and developing novel treatments for AD. In this review, we describe a potential role for human HDPs in the development, exacerbation, and progression of AD and propose their potential therapeutic benefits

    Neutrophil Extracellular Traps in Severe SARS-CoV-2 Infection: A Possible Impact of LPS and (1→3)-β-D-glucan in Blood from Gut Translocation.

    Get PDF
    Due to limited data on the link between gut barrier defects (leaky gut) and neutrophil extracellular traps (NETs) in coronavirus disease 2019 (COVID-19), blood samples of COVID-19 cases-mild (upper respiratory tract symptoms without pneumonia; n = 27), moderate (pneumonia without hypoxia; n = 28), and severe (pneumonia with hypoxia; n = 20)-versus healthy control (n = 15) were evaluated, together with in vitro experiments. Accordingly, neutrophil counts, serum cytokines (IL-6 and IL-8), lipopolysaccharide (LPS), bacteria-free DNA, and NETs parameters (fluorescent-stained nuclear morphology, dsDNA, neutrophil elastase, histone-DNA complex, and myeloperoxidase-DNA complex) were found to differentiate COVID-19 severity, whereas serum (1→3)-β-D-glucan (BG) was different between the control and COVID-19 cases. Despite non-detectable bacteria-free DNA in the blood of healthy volunteers, using blood bacteriome analysis, proteobacterial DNA was similarly predominant in both control and COVID-19 cases (all severities). In parallel, only COVID-19 samples from moderate and severe cases, but not mild cases, were activated in vitro NETs, as determined by supernatant dsDNA, Peptidyl Arginine Deiminase 4, and nuclear morphology. With neutrophil experiments, LPS plus BG (LPS + BG) more prominently induced NETs, cytokines, NFκB, and reactive oxygen species, when compared with the activation by each molecule alone. In conclusion, pathogen molecules (LPS and BG) from gut translocation along with neutrophilia and cytokinemia in COVID-19-activated, NETs-induced hyperinflammation

    Killing of Escherichia coli by Crohn's Disease Monocyte-derived Macrophages and Its Enhancement by Hydroxychloroquine and Vitamin D

    Get PDF
    BACKGROUND: Crohn's disease (CD) is associated with defective innate immunity, including impaired neutrophil chemotaxis, and mucosal invasion by bacteria, particularly adherent and invasive Escherichia coli that replicate inside macrophage phagolysosomes. We compared CD and healthy control (HC) macrophages for their abilities to kill E. coli and generate neutrophil chemoattractants and also assessed the effects of hydroxychloroquine (HCQ) and vitamin D on killing of phagocytosed E. coli. METHODS: Peripheral blood monocyte-derived macrophages from CD and HC were compared for bacterial killing and generation of neutrophil chemoattractants in response to CD-derived E. coli. Escherichia coli replication was also assessed in the presence and absence of HCQ, alone and with antibiotics, and vitamin D. RESULTS: Monocyte-derived macrophages from patients with CD were similar to HC in allowing replication of phagocytosed CD-derived E. coli: HM605 {CD: N = 10, mean fold replication in 3 hr = 1.08 (95% confidence interval [CI], 0.39–1.78); HC: N = 9, 1.50 (95% CI, 1.02–1.97); P = 0.15} and also in generation of neutrophil chemoattractants in response to E. coli (mean fold chemotaxis relative to control: CD = 2.55 [95% CI, 2.31–2.80]; HC = 2.65 [95% CI, 2.46–2.85], P = 0.42). HCQ and 1,25 OH(2)-vitamin D(3) both caused dose-dependent inhibition of intramacrophage E. coli replication 3-hour postinfection; HCQ: 73.9% inhibition (P < 0.001) at 1 μg/mL, accompanied by raised intraphagosomal pH, and 1,25 OH(2)-vitamin D(3): 80.7% inhibition (P < 0.05) at 80 nM. HCQ had synergistic effects with doxycycline and ciprofloxacin. CONCLUSIONS: CD and HC macrophages perform similarly in allowing replication of phagocytosed E. coli and generating neutrophil chemoattractants. Replication of phagocytosed E. coli was substantially decreased by HCQ and vitamin D. These warrant further therapeutic trials in CD in combination with relevant antibiotics

    Neutrophil extracellular traps and phagocytosis in Pythium insidiosum.

    Get PDF
    Neutrophils are innate immune cells that play crucial roles in response to extracellular pathogens, including bacteria and fungi. Pythium insidiosum (P insidiosum) is a fungus-like pathogen that causes "pythiosis" in mammals. This study investigated in vitro function of human neutrophils against P. insidiosum. We demonstrated the killing mechanism of neutrophils when incubated with P. insidiosum zoospores (infective stage), such as phagocytosis and neutrophil extracellular traps (NETs). Healthy human neutrophils significantly reduced six strains of live zoospores isolated from different sources compared to the condition without neutrophils (p < 0.001), observed by colony count and trypan blue staining. As our results showed the killing ability of neutrophils, we further investigated the neutrophil killing mechanism when incubating with zoospores. Our study found that only two strains of heat-killed zoospores significantly induced phagocytosis (p < 0.01). Co-culture of heat-killed zoospores and neutrophils demonstrated NET formation, which was detected by immunofluorescence staining using DAPI, anti-myeloperoxidase, and anti-neutrophil elastase and quantitated under the fluorescence microscope. In addition, the level of cell-free DNA released from neutrophils (as a marker of NET production) after incubation with zoospores showed significantly increased levels when compared with unstimulated neutrophils (p < 0.001). Our findings demonstrate that neutrophils revealed the NET formation in response to P. insidiosum zoospores. This study is the first observation of the neutrophil mechanism against P. insidiosum, which could provide a better understanding of some parts of the innate immune response during pythiosis
    corecore