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Abstract 1	

Background: Neutrophil function is essential for effective defence against bacterial 2	

infections but is defective in patients with sepsis. Ascorbate or vitamin C, which is 3	

low in the plasma of patients with sepsis, is stored inside human neutrophils and is 4	

essential for their normal function.  5	

Objectives: This study aimed to determine if ascorbate treatment ex vivo improved 6	

neutrophil function in patients with sepsis. 7	

Methods: Human blood neutrophils were isolated from 20 patients with sepsis and 20 8	

healthy age-matched controls. Neutrophils were incubated with or without ascorbate 9	

(1, 5, 10, 20 and 40 mM) for periods up to 2h. Chemotaxis was evaluated using a 10	

chemotactic chamber in response to the chemoattractant, fMLP. Phagocytosis (uptake 11	

of  pHrodo red stained S.aureus) and apoptosis (annexin-V/propidium iodide staining) 12	

were measured by flow cytometry. Neutrophil extracellular trap (NET) formation was 13	

detected and quantified using DAPI, anti-myeloperoxidase and anti-neutrophil 14	

elastase immuno-fluorescence staining. Quantifluor detected the amount of dsDNA in 15	

NET supernatants, while quantitative PCR identified changes in expression of PADI4 16	

gene.  17	

Results: Chemotatic and phagocytic activities were decreased in patients with sepsis 18	

but increased after treatment with high concentrations of ascorbate. Apoptosis was 19	

increased in the sepsis patients but not altered by ascorbate treatment.  Spontaneous 20	

NET formation was observed in patients with sepsis. 1mM ascorbate decreased 21	

spontaneous NETosis to that of normal, healthy neutrophils, while high 22	

concentrations of ascorbate (> 10mM) further promoted NET formation. 23	

Conclusion: Dysregulated neutrophil function was observed in patients with sepsis 24	

which could contribute to disease pathology and outcomes. Exposure to ascorbate 25	

could reverse some of these changes in function. These novel discoveries raise the 26	
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possibility that ascorbate treatment could be used as an adjunctive therapy that could 27	

result in improved neutrophil function during sepsis. 28	

 29	

Plain language summary 30	

• Decreased neutrophil chemotaxis and phagocytosis were observed in patients 31	

with sepsis but this was improved by high concentrations of ascorbate. 32	

• Patients with sepsis showed an increase in neutrophil apoptosis which did not 33	

change after ascorbate treatment. 34	

• Patients with sepsis underwent high rates of spontaneous NETosis, that was 35	

decreased by 1mM of ascorbate treatment.  36	

 37	

Keywords: ascorbate, neutrophils, sepsis  38	

 39	

1. Introduction 40	

 Neutrophils are the most abundant type of white blood cell in human 41	

circulation and their main function is to protect against invading pathogens by a 42	

variety of mechanisms such as chemotaxis, phagocytosis, apoptosis and neutrophil 43	

extracellular trap (NET) formation.1,2 There are several factors that maintain the 44	

effectiveness of neutrophil function, one of which is ascorbate or vitamin C.3-7 45	

Ascorbate, a water-soluble vitamin, is essential for human homeostasis, metabolism 46	

and function of the immune system and is stored inside cytoplasm of neutrophils via 47	

vitamin C transporters.8-10 Although it has been reported that ascorbate promotes 48	

neutrophil chemotaxis and phagocytosis,3,4,11 its effects on NET formation and 49	

apoptosis are not well studied.5,7,12 In addition, it is unknown if ascorbate deficiencies 50	

or ascorbate supplementation can contribute to neutrophil function in inflammatory 51	
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conditions or during infections such as sepsis, where neutrophil function may be 52	

compromised.  53	

 Although neutrophils are normally highly-effective in eliminating invading 54	

pathogens, sometimes the invasion of pathogenic organisms overcomes this defence 55	

system, leading to systemic infection and sepsis.1,2,13,14 Sepsis is a life-threatening 56	

condition when the immune system, particularly neutrophils, vigorously battle against 57	

systemic infection. However, it has been reported that defective neutrophil function is 58	

observed in patients during sepsis, particularly elderly people with underlying 59	

illnesses and patients who are immune-compromised (eg those with diabetes, heart 60	

diseases or malignancies).15 61	

 As ascorbate is an essential factor for neutrophil function, this study 62	

determined whether ascorbate treatment ex vivo enhanced neutrophil function in 63	

patients with sepsis. Neutrophil chemotaxis, phagocytosis, apoptosis and NET 64	

formation, including peptidyl arginine deiminase 4 or PADI4 gene expression 65	

(essential for the process of NET formation), were investigated in vitro. Here, we 66	

make the novel observation that short term (2h) ascorbate treatment can enhance 67	

several neutrophil functions that were impaired in the sepsis patients. These novel 68	

observations raise the possibility that ascorbate treatment might be a useful adjunct 69	

therapy for sepsis patients.  70	

 71	

2. Materials and Methods 72	

 The following reagents were used in this study: Polymorphprep (Axis-Shield, 73	

Norway); RPMI 1640 media with 25mM HEPES, L-Glutamine (Hyclone, USA); fetal 74	

bovine serum (Gibco, USA); sodium L-ascorbate (Sigma, USA); rabbit anti-75	

neutrophil elastase and mouse anti-myeloperoxidase and Alexa Fluor 488 conjugated 76	

goat anti-rabbit IgG and Alexa Fluor 647 conjugated anti-mouse IgG (Abcam, UK); 77	
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4’,6-Diamidino-2-phenylindole dihydrochloride (Merck, USA); micrococcal nuclease 78	

from S. aureus (Sigma, USA); QuantiFluor one dsDNA (picogreen), (Promega, 79	

USA); TrizolTM Reagent (Ambion, USA); iScriptTM RT supermix; SsoAdvancedTM 80	

Universal SYBR Green Supermix (BIO-RAD, USA); PADI4 PCR primers (forward: 81	

5'-CGAAGACCCCCAAGGACT-3', reverse: 5'-AGGACAGTTTGCCCCGTG-3') 82	

and ITGB2 PCR primers (forward: 5'-GCTGTCCCCACAAAAAGTG-3', reverse: 5'-83	

CCGGAAGGTCACGTTGAA-3') and b-actin PCR primers (forward: 5'-TTCCTG 84	

GGCATGGAGTC-3', reverse: 5'-CAGGTCTTTGCGGATGTC-3') (Integrated DNA 85	

Technology, Singapore); fMLP and Millipore Hanging Cell Culture plate inserts 86	

(MERCK, USA); Trypan blue (Sigma, USA); Annexin V-APC and  propidium iodide 87	

(Biolegend, USA); pHrodoTM Red S. aureus Bioparticles Phagocytosis Kits 88	

(Invitrogen, USA). 89	

2.1 Patient and healthy controls 90	

 Twenty patients diagnosed with sepsis using Sepsis-3 criteria,16-19 who 91	

attended the Emergency Department, Intensive Care Unit or Intermediate Intensive 92	

Care Unit, Inpatient Department, and 20 healthy aged-match controls were randomly 93	

recruited from the King Chulalongkorn Memorial Hospital, Thailand. Table 1 94	

presents the demographics, underlying illnesses and identified organisms in 95	

hemoculture specimens in the patients. The levels of ascorbate (vitamin C) in plasma 96	

from patients with sepsis and healthy controls were measured using High 97	

Performance Liquid Chromatography (HPLC, Chromosystem, Germany) and shown 98	

in Table 1. Other detailed information of patients diagnosed with sepsis including 99	

blood chemistry, blood coagulation status, platelet count, source of infection and 100	

Sequential Sepsis-Related Organ Failure Assessment (SOFA) score, was presented in 101	

Supplementary Table 1. This study was approved by Chulalongkorn University 102	

Human Research Ethic Committee (IRB 113/60) with validity date from 18 May 2018 103	



	6	
	

until 17 May 2019. Written informed consent and/or assent forms were obtained from 104	

all donors. 105	

2.2 Isolation of Neutrophils 106	

 The blood samples were collected within 72h after the patients had been 107	

diagnosed with sepsis. Neutrophil isolation and culture method was described in our 108	

previous studies.20,21 In brief, neutrophils were isolated from heparinised peripheral 109	

blood of patients with sepsis and healthy donors using Polymorphprep, according to 110	

the manufacturer’s instructions. Red blood cell contamination was removed by 111	

hypotonic lysis buffer. Neutrophils were re-suspended in RPMI 1640 media and the 112	

purity was assessed by staining with Wright stain and was > 95%. Re-suspended 113	

neutrophils were incubated at 37oC in a 5% CO2 incubator, with or without 10% (v/v) 114	

fetal bovine serum, as indicated in the text. 115	

2.3 Neutrophil chemotaxis assay 116	

 The chemotaxis assay was performed using 24-well tissue culture plates. 117	

Isolated neutrophils were treated with or without different concentrations of ascorbate 118	

for 2h in a 5% CO2 incubator. Chemoattractant (fMLP) was added into the wells, and 119	

the hanging inserts with a 3 µm pore-size filter were suspended in the culture media. 120	

Neutrophils at 106 cells/mL were added into the hanging inserts and incubated for 90 121	

min at 37oC in a 5% CO2 incubator. The hanging inserts were then removed and 122	

migrated neutrophils in each well were counted using the CountessTM II automated 123	

cell counter (Thermo Fisher Scientific). Trypan blue staining was performed for 124	

detection of viable cells. 125	

2.4 Neutrophil phagocytosis 126	

 Phagocytic activity was measured using pHrodoTM Red S. aureus Bioparticles 127	

Phagocytosis Kits.22 Isolated neutrophils were treated with or without different 128	

concentrations of ascorbate for 2h at 37oC in a 5% CO2 incubator. The cells were 129	
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incubated with Bioparticles for 30min in the incubator. The cells were washed and 130	

resuspended with PBS. Neutrophil phagocytosis was analysed on a flow cytometer 131	

(FACsAria II, BD Biosciences, USA) measuring 20,000 events per sample. 132	

2.5 Neutrophil apoptosis 133	

 After 2h incubation in the presence or absence of different concentrations of 134	

ascorbate, neutrophils at 2.5x104 cells were stained with Annexin V-APC (10µL/mL) 135	

for 15min before they were stained with propidium iodide (1µg/mL) as described 136	

previously 23. Stained cells were then analysed on a flow cytometer (FACsAria II, BD 137	

Biosciences, USA) analysing 20,000 events per sample. 138	

2.6 Neutrophil extracellular trap (NET) assay 139	

 Sterile round glass cover slips were placed into each well of a 24-well cell 140	

culture plate. Neutrophils (5x105 cells) were added to each well and incubated for 1h 141	

at 37oC in a 5% CO2 incubator. Different concentrations of ascorbate (1, 5, 10, 20 and 142	

40 mM) or 600nM phorbol myristate acetate (PMA) were added into the wells and 143	

incubated for 2h. The culture media was gently aspirated and the cover slips were 144	

washed with PBS. The cells and NETs were fixed with 1% formaldehyde. The glass 145	

cover slips were removed and incubated with 0.05% Tween in 1xPBS at room 146	

temperature for 1min to permeabilize the cells. The cells were blocked for 30min with 147	

1xTBS with 2% bovine serum albumin.  148	

 NET formation was detected using immunofluorescence. Primary antibodies 149	

(rabbit anti-Neutrophil Elastase and mouse anti-Myeloperoxidase) were added (at 150	

1:100 dilution) and incubated for 30min at room temperature. After washing in 151	

1xTBS, secondary antibodies (anti-rabbit IgG and anti-mouse IgG) were added (at 152	

1:400 dilution) and incubated for further 30min. The cover slips were washed and 153	

then stained with DAPI (1µg/mL) before NET identification using a fluorescence 154	

microscope.24 The number of NETing cell was counted per 100 cells. 155	
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2.7 Quantification of NET formation (QuantiFlour®dsDNA) 156	

 Neutrophils were incubated exactly as described in 2.3 (in the absence and 157	

presence of ascorbate at the indicated concentrations) and incubated for 2h. After this 158	

incubation period, 0.1 M CaCl2 was added, followed by 500 mU of micrococcal 159	

nuclease for 10min to digest the NET structure and fragment the DNA. EDTA (0.5 160	

M) was added to inhibit the reaction and supernatants containing DNA were 161	

collected. Quantifluor (PicoGreen) was added to the supernatants, according to the 162	

manufacturer’s instructions and incubated at room temperature for 5min in the dark. 163	

The amount of DNA in the mixture was measured at 485 nm excitation (535 nm 164	

emission) on a PROMEGA QuantusTM Fluorometer.24 165	

2.8 PADI4 mRNA expression 166	

 Total RNA from isolated neutrophils was extracted using TrizolTM Reagent 167	

followed by a DNase digestion step, according to the manufacturer’s instruction.20 168	

The extracted RNA was converted to cDNA using iScriptTM RT supermix. PADI4 169	

gene expression was detected by quantitative PCR using SsoAdvancedTM Universal 170	

SYBR Green Supermix (BIO-RAD),25 using a 7500 ABI Real-Time PCR System. 171	

2.9 Statistical analysis 172	

 Statistical analyses were performed by using GraphPad version 7, Student’s t-173	

test and One-way ANOVA test. Data are expressed as mean ± SEM, and differences 174	

with a p-value of <0.05 were considered statistically-significant. 175	

 176	

3. Results 177	

3.1 Neutrophil chemotaxis, phagocytosis and apoptosis in patients with sepsis 178	

Neutrophils isolated from patients with sepsis showed significantly decreased 179	

cell migration (13.6 ± 8.5%, n=10, p<0.01) in a response towards the chemoattractant 180	

fMLP (100 nM), compared to healthy control neutrophils (31.3 ± 10.7%, n=10) 181	
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(Figure 1A and 1B). Phagocytic activity of neutrophils isolated from patients with 182	

sepsis was significantly decreased (15.4 ± 2.6%, n=5, p<0.01), compared with healthy 183	

controls, (34.4 ± 15.3%, n=5) (Figure 1C and 1D). Increased neutrophil apoptosis was 184	

observed in patients with sepsis (15.6 ± 2.3%, n=5, p<0.005) compared to healthy 185	

controls (7.3 ± 1.5%, n=5) when measured 2h post-isolation (Figure 1E and 1F). 186	

3.2 Spontaneous NET formation in patients with sepsis 187	

Neutrophils isolated from patients with sepsis showed significantly increased 188	

capacity for spontaneous NET formation after 2h post-isolation (21.7 ± 18.7 cells/100 189	

cells undergoing NETosis, n=20, p<0.001) compared to healthy control neutrophils 190	

which showed only barely detectable levels of NETosis (1.2 ± 0.9 cells/100 cells, 191	

n=20) (Figure 2A and 2B). Immuno-fluorescence staining confirmed the presence of 192	

both elastase and myeloperoxidase on these DNA structures, confirming the 193	

formation of genuine NETs (Figure 2A). Induced NET formation by PMA as a 194	

positive control is shown in Supplementary Figure 1. 195	

NETs contain double-stranded DNA (dsDNA),26,27 and so we quantified the 196	

amount of released dsDNA from sepsis patients and healthy donors. The results 197	

showed that the levels of dsDNA were significantly increased in patients with sepsis 198	

(0.94 ± 0.24 ng/mL, n=10, p<0.01) compared to healthy control neutrophils (0.63 ± 199	

0.14 ng/mL, n=10) (Figure 2C). To confirm these observations, we measured mRNA 200	

expression of PADI4 gene as PAD4 enzyme is required for the process of NET 201	

formation.12,28 The results showed that PADI4 mRNA expression was significantly 202	

increased in patients with sepsis (7.6 ± 3.3, n=10, p<0.05), compared to healthy 203	

control neutrophils (3.9 ± 2.2, n=10) (Figure 2D).  204	

3.3 Neutrophil chemotaxis, phagocytosis and apoptosis after ascorbate treatment 205	

in patients with sepsis 206	
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After 2h treatment with different concentrations of ascorbate, the percentages 207	

of cell migration when neutrophils were treated with high concentrations (10, 20 and 208	

40 mM) of ascorbate, were significantly increased in both sepsis patients (51.9 ± 209	

10.8%, 67.7 ± 15.6% and 59.5 ± 9.9%, respectively) and healthy neutrophils (65.0 ± 210	

6.7%, 77.5 ± 8.1%, and 75.1 ± 9.7 %, respectively), compared to sepsis and healthy 211	

neutrophils (29.9 ± 11.0 % and 51.5 ± 11.4%, respectively, n=5 for both groups, 212	

p<0.001) (Figure 3A). Of note, the increased rates of neutrophil chemotaxis in sepsis 213	

patients and healthy controls were comparable at each concentration of ascorbate 214	

(p>0.05), except only at 1 and 40 mM (p<0.01).  215	

Ascorbate treatment increased neutrophil phagocytosis in sepsis patients but 216	

this increase was significantly enhanced at a concentration of 40 mM (46.1 ± 19.8%, 217	

n=5, p<0.01) when compared with untreated neutrophils (15.4 ± 2.6%, n=5) (Figure 218	

3B). However, we did not observe an increase in phagocytosis from healthy control 219	

neutrophils after ascorbate treatment (n=5, p>0.05). In addition, no significance 220	

differences in neutrophil phagocytosis were found between sepsis patients and healthy 221	

controls at each concentration of ascorbate treatment (p>0.05).  222	

The percentages of neutrophil apoptosis in sepsis patients and healthy controls 223	

were unaffected by 2h treatment with ascorbate at all concentrations tested (n=5 for 224	

both groups, p>0.05) (Figure 3C). These percentages of neutrophil apoptosis were 225	

still significantly increased in patients with sepsis compared with healthy controls at 226	

every concentrations of ascorbate treatment (p<0.01). 227	

3.4 NET formation after ascorbate treatment in patients with sepsis 228	

After 2h treatment with different concentrations of ascorbate, the level of NET 229	

formation from neutrophils incubated with 1 mM ascorbate was significantly lower 230	

(4.4 ± 3.1 cells/100 cells, n=10, p<0.05) in patients with sepsis, compared to untreated 231	

sepsis neutrophils (21.7 ± 18.7 cells/100 cells, n=10) (Figure 4A and 4B). However, 232	
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the levels of dsDNA and PADI4 mRNA expression from sepsis neutrophils treated 233	

with 1mM were decreased but these decreases did not reach statistical significances 234	

(p>0.05) (Figure 4C and 4D). Furthermore, the levels of NET formation, dsDNA and 235	

PADI4 mRNA expression between sepsis patients and healthy controls were 236	

comparable when their neutrophils were treated with 1 mM of ascorbate (Figure 4B, 237	

4C and 4D) (p>0.05).  238	

In contrast, higher levels of NET formation were observed in sepsis 239	

neutrophils after ascorbate treatment (³5 mM) particularly at the concentrations of 20 240	

and 40 mM (42.3 ± 10.9 and 57.8 ± 17.4 NETs/100 cells, respectively, p<0.001), 241	

compared to untreated sepsis neutrophils (21.7 ± 18.7 NETs/100 cells, n=20 for both 242	

groups). This observation was also observed in healthy neutrophils after ascorbate 243	

treatment (³5 mM), compared to untreated healthy neutrophils (p<0.001) (Figure 4B). 244	

The levels of NET formation expression between sepsis patients and healthy controls 245	

were comparable at every concentrations of ascorbate treatment (p>0.05), except at 40 246	

mM (p<0.01).  247	

The levels of dsDNA in supernatants were significantly increased in sepsis 248	

and healthy control neutrophils at 40 mM of ascorbate treatment (1.9 ± 0.95 and 1.8 ± 249	

0.9 ng/mL, respectively, n=10), compared to untreated neutrophils (0.94 ± 0.24 250	

ng/mL and 0.63 ± 0.14 ng/mL, respectively, n=10, p<0.01) (Figure 4C). In addition, 251	

increased levels of PADI4 mRNA expression were also detected in both groups after 252	

their neutrophils were treated with 40 mM of ascorbate (1.04 ± 0.95 and 0.72 ± 0.30, 253	

respectively, n=10), compared to untreated neutrophils (p<0.01) (Figure 4D). No 254	

significance differences in the levels of dsDNA and PADI4 mRNA expression 255	

between sepsis patients and healthy controls were found at every concentration of 256	

ascorbate treatment (p>0.05) (Figure 4C and 4D). 257	

 258	
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4. Discussion 259	

 Sepsis is a complex clinical syndrome that develops once a local infection 260	

becomes uncontrollable and the causative pathogens invade into the bloodstream, 261	

leading to systemic inflammation and multi-organ dysfunction.13-15 Early clinical 262	

diagnosis and prompt treatments are crucial to improve outcomes of patients with 263	

sepsis, but the overall mortality rate is tremendously high, particularly in immune-264	

compromised hosts and elderly patients with multiple underlying illnesses.29-31 265	

 In our study, patients were diagnosed with sepsis using the clinical criteria of 266	

Sepsis-3. Each patient had both an identified source of infection and an acute change 267	

in total SOFA score ³ 2 points. However, some patients showed unidentified 268	

organisms in their hemocultures and this observation was probably because of slow-269	

growing or intracellular organisms, or antibiotic treatment started before blood 270	

sampling. 32-34 271	

 Neutrophils are the major innate immune cell that play a role in the 272	

pathogenesis of sepsis, and previous studies have demonstrated that neutrophil 273	

function is dysregulated in these patients.15 Moreover, ascorbate, an important factor 274	

that maintains neutrophil function, rapidly declines in the plasma of neutrophils 275	

during sepsis.10,35-38 In our study, we also found that the plasma level of ascorbate in 276	

patients with sepsis was significantly lower than the levels in healthy controls 277	

(p<0.01) as shown in Table 1. Therefore, it may be hypothesised that ascorbate 278	

supplementation could restore impaired neutrophil function in these patients.  279	

 Our study therefore set out to first determine the function of neutrophils 280	

isolated from sepsis patients. Neutrophil chemotaxis is the crucial step in the 281	

inflammatory response to invading pathogens and phagocytosis is the main killing 282	

mechanism of neutrophils. In our study, chemotaxis and phagocytosis were decreased 283	

in patients with sepsis which is consistent with previous studies.39-42 Furthermore, 284	
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delayed neutrophil apoptosis is the final step in the cycle of neutrophil activation and 285	

the resolution of inflammation,43 and neutrophils become apoptotic prior to removal 286	

by phagocytic cells once they have finished pathogen clearance. However, the rate of 287	

neutrophil apoptosis in vivo in patients with sepsis is still unknown.44,45 Our study 288	

demonstrated increased spontaneous neutrophil apoptosis 2h post-isolation of 289	

neutrophils from patients with sepsis. Our findings support the idea that neutrophil 290	

function is abnormal in patients with sepsis and reduced neutrophil migration may be 291	

partially due to increased apoptosis. 292	

 Our next experiments measured the capacity of neutrophils from sepsis 293	

patients to undergo spontaneous NETosis. This function is an important killing 294	

mechanism of neutrophils against invading pathogens, particularly in the event that 295	

extracellular pathogens cannot be appropriately phagocytosed. However, 296	

inappropriate NET formation may also contribute to inflammation and autoimmunity, 297	

for example by exposure of auto-antigens (eg granule contents) or neo-antigens that 298	

are generated via post-translational modification of nuclear proteins  (eg citrullinated 299	

or acetylated histones).46 After neutrophil activation, NETs are formed and released 300	

extracellularly in order to trap and inhibit systemic spreading of the organisms using 301	

the web-like DNA structure. Subsequently, the proteolytic enzymes (eg neutrophil 302	

elastase) and myeloperoxidase kill the trapped microbes.15 The role of NETosis in 303	

sepsis is complex in that NET formation may initially help prevent the spread and 304	

dissemination of bacteria from a localized site of infection, thereby limiting systemic 305	

infection.47 Nevertheless, excessive NET formation in the later stages of sepsis may 306	

play a role in the development of thrombosis and organ failure.48 307	

 In our study, we showed that neutrophils isolated from patients with sepsis 308	

developed spontaneous NET formation over a 2h incubation ex vivo. This observation 309	

is consistent with a previous study, suggesting that neutrophils were already 310	
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stimulated by the pathogens infecting the patients during sepsis.49 This finding was 311	

confirmed by measurements of an increase in dsDNA levels and upregulation of 312	

PADI4 mRNA expression, a key enzyme involved in the regulation of NETosis,50 in 313	

neutrophils isolated from patients with sepsis. However, we observed a very high 314	

range of spontaneous NETosis in these sepsis patients, ranging from 2-3% of the 315	

neutrophils to over 80% of the cells undergoing NETosis. These reasons for this very 316	

large variation in NETosis are unknown, and we could not find any association 317	

between the extent of NETosis and any clinical parameters, tested such as severity of 318	

disease, type of bacterial infection, and duration of sepsis or treatment. 319	

 Therefore, the effect of ascorbate on neutrophil functions were investigated in 320	

our study. We found that high concentrations of ascorbate treatment (particularly at 321	

40 mM) increased both neutrophil chemotactic and phagocytic activities in these 322	

patients. Similar findings have been reported in both sepsis patients and mouse 323	

models, which showed increased chemotaxis and phagocytosis after ascorbate 324	

supplementation.11,51,52 Moreover, neutrophil chemotaxis and phagocytosis in healthy 325	

controls were increased by ascorbate treatment. Thus, the effects of ascorbate on 326	

neutrophil function are not restricted to cells isolated from sepsis patients, but rather 327	

are more generalized effects on some neutrophil functions. Interestingly, we noticed 328	

that these neutrophil functions were comparable between sepsis patients and healthy 329	

controls after their neutrophils were treated with ascorbate (³ 5 mM), suggesting that 330	

neutrophil dysfunction in patients with sepsis were restored and returned to nearly 331	

normal function by ascorbate treatment. The potential mechanism of ascorbate on the 332	

enhancement of neutrophil chemotaxis and phagocytosis was reported in previous 333	

studies which indicated that intracellular microtubule assembly of neutrophil was 334	

stabilized by ascorbate treatment, leading to improvement of neutrophil motility and 335	

function. 51,53 336	
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 However, ascorbate treatment did not significantly change the rate of 337	

neutrophil apoptosis in our patients and healthy controls. Therefore, this finding 338	

suggests that neutrophil apoptosis is still required as the last step of eliminating 339	

pathogens in patients with sepsis, and ascorbate is not involved in the apoptotic 340	

process of neutrophils. In contrast, a previous study showed that intravenous 341	

ascorbate supplementation in patients with sepsis after abdominal surgery temporarily 342	

decreased the levels of apoptotic proteins in peripheral blood neutrophils.54 However, 343	

the rate of neutrophil apoptosis was not determined in their study. 344	

 Having shown that spontaneous NETosis was observed in sepsis patients, we 345	

then determined whether ascorbate could alter these levels of NETosis, as serum and 346	

plasma levels of ascorbate were shown to be decreased during sepsis in previous 347	

studies and our own patients.37 We found that low level of ascorbate (1mM) could 348	

significantly decrease levels of spontaneous NETosis of neutrophils from sepsis 349	

patients, which was confirmed by decreased levels of PADI4 mRNA expression in 350	

these patients (Figure 4D). Moreover, we noticed that the levels of NETosis from both 351	

sepsis patients and healthy controls were less detectable (<5 NETs counted in Figure 352	

4B) and comparable (dsDNA levels in Figure 4C) after their neutrophils were treated 353	

with or without 1mM of ascorbate. Our findings suggest that 1 mM of ascorbate 354	

treatment significantly reduces spontaneous NET formation in patients with sepsis 355	

and their rates of NETosis return to normal as seen in healthy controls. The potential 356	

mechanism of ascorbate on decreased NET formation may be due to the modulation 357	

of redox-related cell signaling pathways by ascorbate, which stabilizes and protects 358	

the cell membrane from oxidative stress during sepsis leading to a decrease in NET 359	

release.51  360	

 Higher concentrations of ascorbate (>10 mM) further increased NETosis 361	

significantly in both patients with sepsis and healthy controls, above the already high 362	
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levels observed in the absence of this compound. However, previous studies showed a 363	

significant decrease in NETs inside the lungs of ascorbate-deficient mice after 364	

ascorbate supplementation,55,56 which is contrast to our study, and probably explained 365	

by different tissue sources of neutrophils studied (lungs VS peripheral blood in our 366	

study and species variations) and different concentrations of ascorbate used in both 367	

studies.  368	

 The increased levels of NETosis after higher concentrations of ascorbate 369	

treatment was confirmed by measurements of an increase in dsDNA levels in culture 370	

supernatants and increased levels of PADI4 mRNA expression of neutrophils treated 371	

with ascorbate. We believe that these higher concentrations of ascorbate further 372	

induce an oxidative burst and activate the PAD4 enzyme leading to an increase in 373	

NET formation.57 Nevertheless, the levels of dsDNA at certain concentrations of 374	

ascorbate were not significantly different as seen under light microscopy, probably 375	

due to some limitations of the PicoGreen assay,58 and delayed upregulation of mRNA 376	

transcription and protien translation which probably need more future studies. 377	

 As integrin activation is associated with all neutrophil phenotypes observed in 378	

our study, we further investigated the activation status of integrins on neutrophils 379	

from patients with sepsis and healthy controls as shown in Supplementary Figure 2. 380	

As expected, an increase in expression of ITGB2 (b2-integrin) was observed in the 381	

patient group, probably because their neutrophils were stimulated by pathogens and 382	

cytokines during sepsis.59 However, the ITGB2 expression was unchanged after 383	

ascorbate treatement in both groups. 384	

 One limitation of this study was that the numbers of isolated neutrophils from 385	

patients or healthy controls were varied and sometimes they were not enough to 386	

perform every designed experiments. However, these numbers of patients were 387	

sufficient for statistical analyses. 388	
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   389	

 In conclusion, our study demonstrated neutrophil dysfunction in patients with 390	

sepsis and ascorbate could improve the defective chemotaxis and phagocytosis 391	

observed in neutrophils from these patients. Interestingly, high levels of spontaneous 392	

NETosis from sepsis patients could be returned to normal by low concentrations of 393	

ascorbate (1 mM). However, further studies are probably needed to investigate the 394	

mechanisms how NETosis, chemotaxis and phagocytosis, but not apoptosis, were 395	

enhanced by high concentrations of ascorbate, which have never been explored.51 396	

This study suggests that ascorbate could potentially be used as an adjunctive treatment 397	

for patients during sepsis. However, as its effects are highly dose-dependent, such 398	

treatments should carefully examine the effective doses that are clinically beneficial 399	

and whether NETosis should be prevented or promoted in such patients.  400	
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 569	

 570	
 571	
Figure 1. Representative images of neutrophils from cell migration stained with 572	
trypan blue and counted by automated cell counter (A), and the percentages of 573	
neutrophil chemotaxis of healthy donors (n=10) and patients with sepsis (n=10) (B). 574	
Representative flow cytometry results (C), and the percentages of phagocytic activity 575	
of healthy donors (n=5) and patients with sepsis (n=5) (D). Representative flow 576	
cytometry results (E), and the percentages of neutrophil apoptosis of healthy donors 577	
(n=5) and patients with sepsis (n=5) (F). (**; p<0.01, ***; p<0.005). 578	
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 592	
Figure 2. Representative fluorescence images (400X) of isolated neutrophils from 593	
healthy controls (n=20) and patients with sepsis (n=20), stained with DAPI (blue), 594	
elastase (green) and myeloperoxidase (red), and merged images for NET 595	
identification after 2h post-isolation ex vivo (A). Spontaneous NET formation after 2h 596	
post-isolation (B), the levels of dsDNA (C) and PADI4 mRNA expression (D) from 597	
healthy controls and patients with sepsis (n=10 for both groups), (*; p<0.05, **; 598	
p<0.01, ****; p<0.001). 599	
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 623	
 624	
Figure 3. The percentages of neutrophil chemotaxis or cell migration (A), 625	
phagocytosis (B) and apoptosis (C) from healthy donors and patients with sepsis (n=5 626	
for both groups) and the effect of ascorbate (1, 5, 10, 20 and 40 mM) on neutrophils 627	
after 2h treatment. (**** p< 0.0001, *** p< 0.001, ** p< 0.01, * p< 0.05) (##; p<0.01, 628	
###; p<0.005, ####; p<0.001; when compared between groups). 629	
 630	
 631	
 632	

 633	
Figure 4. Effect of ascorbate on NET formation. Representative fluorescence images 634	
(400X) of isolated neutrophils from patients with sepsis and healthy controls treated 635	
with 1, 10 and 40 mM of ascorbate for 2h and stained with DAPI staining for NET 636	
identification (A). NETs counted per 100 neutrophils (n=20 for both groups) (B), the 637	
levels of dsDNA (C) and PADI4 mRNA expression (D) from patients with sepsis and 638	
healthy controls (n=10 for both groups) treated with different concentrations of 639	
ascorbate (1, 5, 10, 20 and 40 mM) for 2h (**** p< 0.0001, *** p< 0.001, ** p< 0.01) 640	
(##; p<0.01, ####; p<0.001; when compared between groups). 641	
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 647	
Supplementary Figure 1. Effect of phorbol myristate acetate (PMA; 600nM) on 648	
NET formation. NETs counted per 100 neutrophils (n=5 for both groups) (A), the 649	
levels of dsDNA (B) from patients with sepsis and healthy controls (n=5 for both 650	
groups) (**** p< 0.0001, *** p< 0.001). 651	
 652	
 653	
 654	
 655	

 656	
Supplementary Figure 2. The ITGB2 mRNA expression (A) of isolated neutrophils 657	
from patients with sepsis and healthy controls (n=5 for both groups), and (B) cells 658	
treated with different concentrations of ascorbate (1, 5, 10, 20 and 40 mM) for 2h (* 659	
p< 0.05). 660	
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Table 1. Demographic data 664	

 665	

Characteristic Healthy (N=20) Sepsis (N=20) p-value 

Gender 

-male (%) 

-female (%) 

 

11 (55) 

9 (45) 

 

11 (55) 

9 (45)  

 

1.0 

1.0 

Mean age, years ± SD 61 ± 14.1 60 ± 12.2 1.0 

Time of diagnosis: days after 

hospitalization; Median (IQ range) 

 

N/A 

 

11 (6 - 28) 

 

N/A 

WBC count (x103cells/µL ± SD) 6.7 ± 2.3 16.5 ± 9.6 <0.001 

-Absolute neutrophil (x103cells/µL ± SD) 4.1 ± 2.0 14.3 ± 9.4 <0.001 

Underlying illnesses    

- Diabetes mellitus, n (%) 6 (30) 5 (25) >0.99 

- Hypertension, n (%) 6 (30) 7 (35) >0.99 

- Ischemic heart disease, n (%) 0 (0) 2 (10) 0.49 

- Dyslipidemia, n (%) 3 (15) 1 (5) 0.61 

- Malignancy, n (%) 0 (0) 8 (40) 0.003 

Organisms (identified in blood)    

- Staphylococcus spp. N/A 1 (5) N/A 

- Escherichia spp. N/A 2 (10) N/A 

- Candida spp. 

- unidentified organisms 

N/A 

N/A 

2 (10) 

15 (75) 

N/A 

N/A 

Plasma level of ascorbate or vitamin C 

(mg/L ± SD) 7.79 ± 3.86 1.03 ± 2.07 <0.01 

Abbreviations: SD; standard deviation, WBC; white blood cell, N/A; not applicable  
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Supplementary Table 1. Detailed information of patients with sepsis 666	
 667	

Patient 
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Gender M F F F F F F M F M M M M M M F F M M M 

Age 65 65 60 27 63 34 66 64 61 60 65 60 39 60 67 70 72 62 63 78 

Source of 
infection 

GI 
tract 

GI 
tract 

GI 
tract RS 

GI 
tract 

GI 
tract RS RS Skin Skin RS 

GI 
tract CNS 

GU 
tract RS RS RS RS Skin 

GI 
Tract 

BUN 
(mg/dL) 52 91 18 9 51 15 14 44 56 62 71 34 91 102 20 64 2.26 1.18 0.72 51 

Cr 
(mg/dL) 3.52 5.01 0.71 0.72 2.03 1.96 1.69 2.15 1.54 1.28 2.12 2.95 3.7 3.08 1.82 3.49 21.5 66.5 109.81 3.54 

TB 
(mg/dL) 0.43 0.6 0.87 NA 33.52 1.64 0.74 0.51 0.72 2.19 0.47 12.55 3.16 16.41 0.65 0.74 0.29 1.39 1.42 0.84 

DB 
(mg/dL) 0.33 0.49 0.61 NA 23.68 0.82 0.41 0.38 0.32 1.71 0.19 8.2 2.51 11.18 0.29 0.53 51 71 47 0.55 

SGOT 
(U/L) 31 50 46 NA 14 1417 2199 33 87 36 29 1590 155 103 55 29 41 32 52 49 

SGPT 
(U/L) 34 56 70 NA 2 632 1047 29 87 27 33 816 139 8 14 13 74 168 36 26 

ALP 
(U/L) 265 452 372 NA 147 72 95 90 68 94 123 443 157 384 244 72 140 141 135 117 

Na 
(mmol/L) 137 141 146 134 138 148 133 131 141 143 145 134 143 132 133 142 4.3 3.5 3.1 146 

K 
(mmol/L) 3.5 4.3 3.5 3.5 3.1 3.9 4 5 4 3.8 4.3 3.3 4.6 4.8 3.5 3.5 106 116 109 3.6 

Cl 
(mmol/L) 108 107 111 106 96 95 87 95 101 112 110 98 113 96 102 102 25 11 18 106 

CO2 
(mmol/L) 17 17 15 21 18 17 23 24 20 19 21 22 19 13 17 21 235 78 7 19 

Platelet 
(103/uL) 299 234 55 286 82 95 204 230 146 39 117 61 558 43 140 284 8.25 18.18 0.19 55 

SOFA 
score 11 13 12 5 16 11 9 4 2 8 10 18 10 15 10 4 10 8 8 12 

Abbreviations: GI; gastrointestinal, RS; respiratory system, CNS; central nervous system, GU; genitourinary, and SOFA; Sequential Sepsis-Related 668	
Organ Failure Assessment, SD; standard deviation, N/A; not applicable 669	


