14 research outputs found
Irrigation Water Quality Assessment Using Water Quality Index and GIS Technique in Pondicherry Region, South India
The utility of groundwater, irrespective of its availability, is essential for mankind. The efficacy of the coastal aquifer’s groundwater quality for agriculture purpose in the Pondicherry region was gauged by their hydrochemistry. 44 groundwater samples were collected during 4 different seasons namely, pre-monsoon (PRM), southwest monsoon (SWM), northeast monsoon (NEM) and post-monsoon (POM). The samples were measured for physico-chemical parameters like pH, EC, TDS, Na, K, Ca, Mg, Cl, HCO3, PO4, SO4 and NO3. The spatio temporal variations of EC indicates that the coastal groundwater were relatively saline except during PRM. The suitability of groundwater for irrigation is evaluated through various water quality parametrs such as Electrical Conductivity (EC), pH, Na%, sodium absorption ratio (SAR), residual sodium carbonate (RSC) and permeability index (PI). Na%, SAR, PI and EC values were spatially interporlated and integrated to determine the regions suitable for irrigation purpose. The study infers that the groundwater of the study area is suitable for irrigation except few samples’ locations along the western part, as they have attained an alarming stage and they are unsuitable for irrigation. Thus, proper management strategy for irrigation water source has to be developed and a preventive management practice to address this issue has to be implemented
Tracing geochemical sources and health risk assessment of uranium in groundwater of arid zone of India
Water quality degradation and metal contamination in groundwater are serious concerns in an arid region with scanty water resources. This study aimed at evaluating the source of uranium (U) and potential health risk assessment in groundwater of the arid region of western Rajasthan and northern Gujarat. The probable source of vanadium (V) and fluorine (F) was also identified. U and trace metal concentration, along with physicochemical characteristics were determined for 265 groundwater samples collected from groundwater of duricrusts and palaeochannels of western Rajasthan and northern Gujarat. The U concentration ranged between 0.6 and 260 μg L−1 with a mean value of 24 μg L−1, and 30% of samples surpassed the World Health Organization’s limit for U (30 μg L−1). Speciation results suggested that dissolution of primary U mineral, carnotite [ K2(UO2)2(VO4)2·3H2O] governs the enrichment. Water–rock interaction and evaporation are found the major hydrogeochemical processes controlling U mineralization. Groundwater zones having high U concentrations are characterized by Na–Cl hydrogeochemical facies and high total dissolved solids. It is inferred from geochemical modelling and principal component analysis that silicate weathering, bicarbonate complexation, carnotite dissolution, and ion exchange are principal factors controlling major solute ion chemistry. The annual ingestion doses of U for all the age groups are found to be safe and below the permissible limit in all samples. The health risk assessment with trace elements manifested high carcinogenic risks for children
A Novel Approach for Groundwater Budgeting Using GIS in a Part of Pondicherry Region, India
The over extraction of groundwater from the coastal aquifers, result in reduction of groundwater resource and lowering of water level. In general, the depletion of groundwater level enhances the landward migration of saltwater wedge. Pondicherry is one such region with recent alluvium as the major formation. Since the study area forms a part of the coastal aquifer system this behaves as a fragile ecosystem. The present study has been attempted to calculate the extraction of water and to estimate the amount of recharge into this allu-vial aquifer by using groundwater level variations. The monthly water level fluctuation was observed during the study period (2000-2002) in eighteen locations. The maximum rise in groundwater level observed during 2000 was considered as the initial water level for the study and the subsequent decline in water level (draw down) was monitored monthly until the rising trend was noted. This indicates the fall in water level due to extraction.Later keeping the deepest draw down as the initial value increasing water level trend was studied until there was a notice of decline in groundwater level. This indicates as the rise in water level due to re-charge. This method of observation carried out at a single location was adopted for all eighteen locations. The spatial representation of these data for eighteen locations were carried out by using GIS and the area occupied by different groundwater level contours were calculated and the amount of water withdrawn/re- charged was estimated. The maximum recharge was noted in the central and the northern part of the study area when compared to the other regions. Similarly, the maximum discharge was noted in the northern and the southern part of the study area during the study period
Influence of Dissolved Oxygen, Water Level and Temperature on Dissolved Organic Carbon in Coastal Groundwater
The quality of groundwater has been severely impacted by urbanization around coasts. The change in climate and land use patterns has deteriorated the quality and availability of groundwater. One of the main issues in contemporary groundwater quality research is dissolved organic carbon (DOC) in the water. The influence of DO, water level and water temperature on DOC in groundwater was identified in the current study by sampling 68 groundwater samples. The analytical results revealed that ~18% of total samples have DOC > 5 mg/L. The groundwater samples represented in the urban regions show high DOC. The samples with higher DOC correlated positively with dissolved inorganic ions, such as Ca, K, NO3, Fe and DO. Domestic wastewater, agricultural runoff and local geology all have an impact on the DOC of groundwater. Groundwater chemistry is shown to be controlled by both aerobic and anaerobic conditions based on the DOC’s interactions with other ions. The study interrelates various sources, such as land use, geology, water level and temperature, to the DOC in groundwater and infers that the levels are higher in shallow groundwater, predominantly around the built-up region followed by the agricultural region. The temperature changes enhance the DOC in groundwater due to the variation in microbial activity. The shallow water level with a lower temperature shows the maximum DOC. Apart from the sediment organic matter and microbes, the study also attributes land use pattern to the source of DOC in groundwater
A Review of the Publications on Carbon Isotopes in Groundwater and Rainwater
The terrestrial components of the hydrological cycle include rainwater, surface water, and groundwater. Carbon (C) isotopes allow hydrologists to pinpoint the age of groundwater, track its flow rate, and identify the sources and processes. This research summarizes previous investigations conducted on the isotopes of groundwater and precipitation. The Scopus database contains works from authors from fifty nations, who have conducted research integrating C isotopes in groundwater and precipitation. The review shows that there have been few C isotope investigations on carbon storage and sequestration, as well as on δ13C of precipitation in arid regions. An integrated e-DNA investigation on the process of C isotope fractionation in diverse environments, as well as research on 13C of precipitation in arid regions before and after dust storms, is required to elucidate the relative contributions of biogenic, geogenic, and anthropogenic sources. However, carbon isotope fingerprints that are unique to individual compounds, such as those of fugitive gases, need sophisticated analytical equipment in order to be investigated, limiting this type of study to nations with robust scientific infrastructures and well-trained manpower. The International Atomic Energy Agency (IAEA) has been instrumental in this effort by providing collaborative research and analytical support, resulting in the development of a network for isotope data generation
Understanding arsenic behavior in alluvial aquifers: Evidence from sediment geochemistry, solute chemistry and environmental isotopes
The hydro-geochemistry and isotopic variations in groundwater, coupled with sediment geochemistry, were investigated in the Middle Gangetic Plain, India, to better understand the aquifer dynamics that influence the arsenic (As) evolution and mobilization. Eighty-four groundwater samples, thirteen River water samples, and two sediment cores (33 mbgl) were studied. The samples were analyzed for major ions and trace metals, including As and stable isotopic variability (δ2H, δ18O, and δ13C). The study area was categorized into older and younger alluvium based on existing geomorphological differences. Younger alluvium exhibits higher As enrichment in sediment and groundwater, ranging of 2.59–31.52 mg/kg and bdl to 0.62 mg/L. Groundwater samples were thermodynamically more stable with As(OH)3 species ranging from 88.5% to 91.4% and FeOOH from 69% to 81%, respectively. PHREEQC and mineralogical analysis suggested goethite and siderite act as a source and sink for As. However, statistical analysis suggested reductive dissolution as the primary mechanism for As mobilization in the study area. Spatio-temporal analysis revealed elevated concentrations of As in the central and northeastern regions of the study area. Stable isotope (δ2H and δ18O) analysis inferred active recharge conditions primarily driven by precipitation. The depleted d-excess value and enriched δ18O in the groundwater of younger alluvium indicate the effect of groundwater recharge with significant evaporation enrichment. Groundwater recharge potentially decreased the quantity of arsenic in groundwater, whereas evaporation enrichment increased it. Rainwater infiltration during recharge introduces oxygenated water into the aquifer, leading to changes in the redox conditions and facilitating biogeochemical reactions. The carbon isotope (δ13C) results suggest that high microbial activity in younger alluvium promotes As leaching from sediment into the groundwater