27 research outputs found

    A Novel fry1 Allele Reveals the Existence of a Mutant Phenotype Unrelated to 5′->3′ Exoribonuclease (XRN) Activities in Arabidopsis thaliana Roots

    Get PDF
    BACKGROUND Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3',(2'),5'-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. PRINCIPAL FINDINGS A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4). Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3'-polyadenosine 5'-phosphate (PAP) into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN) in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. CONCLUSIONS/SIGNIFICANCE Our results indicate that the 3',(2'),5'-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of Pi and is independent of the XRNs.This work was supported by an ANR-GENOPLANT grant (RIBOROOT-ANR06 GPLA 011) and the CEA agency. Array hybridizations have been partly supported by RNG (Réseau National des Génopoles, Evry, France). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding received for this study

    Xylem K+ loading modulates K+ and Cs+ absorption and distribution in Arabidopsis under K+-limited conditions

    Get PDF
    Potassium (K+) is an essential macronutrient for plant growth. The transcriptional regulation of K+ transporter genes is one of the key mechanisms by which plants respond to K+ deficiency. Among the HAK/KUP/KT transporter family, HAK5, a high-affinity K+ transporter, is essential for root K+ uptake under low external K+ conditions. HAK5 expression in the root is highly induced by low external K+ concentration. While the molecular mechanisms of HAK5 regulation have been extensively studied, it remains unclear how plants sense and coordinates K+ uptake and translocation in response to changing environmental conditions. Using skor mutants, which have a defect in root-to-shoot K+ translocation, we have been able to determine how the internal K+ status affects the expression of HAK5. In skor mutant roots, under K+ deficiency, HAK5 expression was lower than in wild-type although the K+ concentration in roots was not significantly different. These results reveal that HAK5 is not only regulated by external K+ conditions but it is also regulated by internal K+ levels, which is in agreement with recent findings. Additionally, HAK5 plays a major role in the uptake of Cs+ in roots. Therefore, studying Cs+ in roots and having more detailed information about its uptake and translocation in the plant would be valuable. Radioactive tracing experiments revealed not only a reduction in the uptake of 137Cs+ and 42K+in skor mutants compared to wild-type but also a different distribution of 137Cs+ and 42K+ in tissues. In order to gain insight into the translocation, accumulation, and repartitioning of both K+ and Cs+ in plants, long-term treatment and split root experiments were conducted with the stable isotopes 133Cs+ and 85Rb+. Finally, our findings show that the K+ distribution in plant tissues regulates root uptake of K+ and Cs+ similarly, depending on HAK5; however, the translocation and accumulation of the two elements are different

    Transparency in planning, warranting and interpreting research

    Get PDF
    409 PSI DMRs in the DCL3a RNAi line, and 88 PSI DMRs in the DCL3a RNAi line, associated with significant changes in nearby gene expressio

    A Novel fry1 Allele Reveals the Existence of a Mutant Phenotype Unrelated to 5′->3′ Exoribonuclease (XRN) Activities in Arabidopsis thaliana Roots

    Get PDF
    International audienceBackgroundMutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3′,(2′),5′-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta.Principal FindingsA fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4). Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3′-polyadenosine 5′-phosphate (PAP) into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN) in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background.Conclusions/SignificanceOur results indicate that the 3′,(2′),5′-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of Pi and is independent of the XRNs.

    Disruption of AtHAK/KT/KUP9 enhances plant cesium accumulation under low potassium supply.

    No full text
    International audienceUnderstanding molecular mechanisms which underlie transport of cesium (Cs+) in plants is important to limit entry of its radioisotopes from contaminated area to the food chain. The potentially toxic element Cs+, which is not involved in any biological process, is chemically closed to the macronutrient potassium (K+). Among the multiple K+ carriers, the high-affinity K+ transporters family HAK/KT/KUP is thought to be relevant in mediating opportunistic Cs+ transport. On the 13 KUP identified in Arabidopsis thaliana, only HAK5, the major contributor to root K+ acquisition under low K+ supply, has been functionally demonstrated to be involved in Cs+ uptake in planta. In the present study, we showed that accumulation of Cs+ increased by up to 30% in two A. thaliana mutant lines lacking KUP9 and grown under low K+ supply. Since further experiments revealed that Cs+ release from contaminated plants to the external medium is proportionally lower in the two kup9 mutant alleles, we proposed that KUP9 disruption could impair Cs+ efflux. By contrast, K+ status in kup9 mutants is not affected suggesting that KUP9 disruption does not alter substantially K+ transport in experimental conditions used. Putative primary role of KUP9 in plants is further discussed

    Xylem K+ loading modulates K+ and Cs+ absorption and distribution in Arabidopsis under K+-limited conditions

    No full text
    International audiencePotassium (K + ) is an essential macronutrient for plant growth. The transcriptional regulation of K + transporter genes is one of the key mechanisms by which plants respond to K + deficiency. Among the HAK/KUP/KT transporter family, HAK5, a high-affinity K + transporter, is essential for root K + uptake under low external K + conditions. HAK5 expression in the root is highly induced by low external K + concentration. While the molecular mechanisms of HAK5 regulation have been extensively studied, it remains unclear how plants sense and coordinates K + uptake and translocation in response to changing environmental conditions. Using skor mutants, which have a defect in root-to-shoot K + translocation, we have been able to determine how the internal K + status affects the expression of HAK5 . In skor mutant roots, under K + deficiency, HAK5 expression was lower than in wild-type although the K + concentration in roots was not significantly different. These results reveal that HAK5 is not only regulated by external K + conditions but it is also regulated by internal K + levels, which is in agreement with recent findings. Additionally, HAK5 plays a major role in the uptake of Cs + in roots. Therefore, studying Cs + in roots and having more detailed information about its uptake and translocation in the plant would be valuable. Radioactive tracing experiments revealed not only a reduction in the uptake of 137 Cs + and 42 K + in skor mutants compared to wild-type but also a different distribution of 137 Cs + and 42 K + in tissues. In order to gain insight into the translocation, accumulation, and repartitioning of both K + and Cs + in plants, long-term treatment and split root experiments were conducted with the stable isotopes 133 Cs + and 85 Rb + . Finally, our findings show that the K + distribution in plant tissues regulates root uptake of K + and Cs + similarly, depending on HAK5 ; however, the translocation and accumulation of the two elements are different

    Tissue‐specific inactivation by cytosine deaminase/uracil phosphoribosyl transferase as a tool to study plant biology

    No full text
    International audienceRecent advances in the study of plant developmental and physiological responses have benefited from tissue-specific approaches, revealing the role of some cell types in these processes. Such approaches have relied on the inactivation of target cells using either toxic compounds or deleterious genes; however, both tissue-specific and truly inducible tools are lacking in order to precisely target a developmental window or specific growth response. We engineered the yeast fluorocytosine deaminase (FCY1) gene by creating a fusion with the bacterial uracil phosphoribosyl transferase (UPP) gene. The recombinant protein converts the precursor 5-fluorocytosine (5-FC) into 5-fluorouracyl, a drug used in the treatment of a range of cancers, which triggers DNA and RNA damage. We expressed the FCY-UPP gene construct in specific cell types using enhancer trap lines and promoters, demonstrating that this marker acts in a cell-autonomous manner. We also showed that it can inactivate slow developmental processes like lateral root formation by targeting pericycle cells. It also revealed a role for the lateral root cap and the epidermis in controlling root growth, a faster response. The 5-FC precursor acts systemically, as demonstrated by its ability to inhibit stomatal movements when supplied to the roots in combination with a guard cell-specific promoter. Finally, we demonstrate that the tissular inactivation is reversible, and can therefore be used to synchronize plant responses or to determine cell type-specific functions during different developmental stages. This tool will greatly enhance our capacity to understand the respective role of each cell type in plant physiology and development

    Figure 1-source data 1

    No full text
    Figure 1-source data 1: FPKM and fold change of all genes in rice roots and shoots upon Pi treatments

    Immunity at Cauliflower Hydathodes Controls Systemic Infection by Xanthomonas campestris pv campestris

    No full text
    International audienceHydathodes are water pores found on leaves of a wide range of vascular plants and are the sites of guttation. We report here on the detailed anatomy of cauliflower (Brassica oleracea) and Arabidopsis (Arabidopsis thaliana) hydathodes. Hydathode surface presents pores resembling stomata giving access to large cavities. Beneath, the epithem is composed of a lacunar and highly vascularized parenchyma offering a direct connection between leaf surface and xylem vessels. Arabidopsis hydathode pores were responsive to ABA and light similar to stomata. The flg22 flagellin peptide, a well-characterized elicitor of plant basal immunity, did not induce closure of hydathode pores in contrast to stomata. Because hydathodes are natural infection routes for several pathogens, we investigated hydathode infection by the adapted vascular phytopathogenic bacterium Xanthomonas campestris pv campestris (Xcc), the causal agent of black rot disease of Brassicaceae. Microscopic observations of hydathodes six days postinoculation indicated a digestion of the epithem cells and a high bacterial multiplication. Postinvasive immunity was shown to limit pathogen growth in the epithem and is actively suppressed by the type III secretion system and its effector proteins. Altogether, these results give a detailed anatomic description of Brassicaceae hydathodes and highlight the efficient use of this tissue as an initial niche for subsequent vascular systemic dissemination of Xcc in distant plant tissues
    corecore