48 research outputs found

    HIV and SARS-CoV-2 Co-Infection: From Population Study Evidence to In Vitro Studies

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused two major viral outbreaks during the last century. Two major aspects of HIV-1 and SARS-CoV-2 co-infection have been extensively investigated and deserve attention. First, the impact of the co-infection on the progression of disease caused by HIV-1 or SARS-CoV-2. Second, the impact of the HIV-1 anti-retroviral treatment on SARS-CoV-2 infection. In this review, we aim to summarize and discuss the works produced since the beginning of the SARS-CoV-2 pandemic ranging from clinical studies to in vitro experiments in the context of co-infection and drug development

    Human Mutated MYOT and CRYAB Genes Cause a Myopathic Phenotype in Zebrafish

    Get PDF
    Myofibrillar myopathies (MFMs) are a group of hereditary neuromuscular disorders sharing common histological features, such as myofibrillar derangement, Z-disk disintegration, and accumulation of degradation products into protein aggregates. They are caused by mutations in several genes that encode either structural proteins or molecular chaperones. Nevertheless, the mechanisms by which mutated genes result in protein aggregation are still unknown. To unveil the role of myotilin and αB-crystallin in the pathogenesis of MFM, we injected zebrafish fertilized eggs at one-cell stage with expression plasmids harboring cDNA sequences of human wildtype or mutated MYOT (p.Ser95Ile) and human wildtype or mutated CRYAB (p.Gly154Ser). We evaluated the effects on fish survival, motor behavior, muscle structure and development. We found that transgenic zebrafish showed morphological defects that were more severe in those overexpressing mutant genes which developed a myopathic phenotype consistent with that of human myofibrillar myopathy including the formation of protein aggregates. Results indicate that pathogenic mutations in myotilin and αB-crystallin genes associated with MFM cause a structural and functional impairment of the skeletal muscle in zebrafish, thereby making this non-mammalian organism a powerful model to dissect disease pathogenesis and find possible druggable targets

    Monomeric gremlin is a novel vascular endothelial growth factor receptor-2 antagonist

    Get PDF
    Angiogenesis plays a key role in various physiological and pathological conditions, including inflammation and tumor growth. The bone morphogenetic protein (BMP) antagonist gremlin has been identified as a novel pro-angiogenic factor. Gremlin promotes neovascular responses via a BMP-independent activation of the vascular endothelial growth factor (VEGF) receptor-2 (VEGFR2). BMP antagonists may act as covalent or non-covalent homodimers or in a monomeric form, while VEGFRs ligands are usually dimeric. However, the oligomeric state of gremlin and its role in modulating the biological activity of the protein remain to be elucidated.Here we show that gremlin is expressed in vitro and in vivo both as a monomer and as a covalently linked homodimer. Mutagenesis of amino acid residue Cys141 prevents gremlin dimerization leading to the formation of gremlinC141A monomers. GremlinC141A monomer retains a BMP antagonist activity similar to the wild-type dimer, but is devoid of a significant angiogenic capacity. Notably, we found that gremlinC141A mutant engages VEGFR2 in a non-productive manner, thus acting as receptor antagonist. Accordingly, both gremlinC141A and wild-type monomers inhibit angiogenesis driven by dimeric gremlin or VEGF-A165. Moreover, by acting as a VEGFR2 antagonist, gremlinC141A inhibits the angiogenic and tumorigenic potential of murine breast and prostate cancer cells in vivo.In conclusion, our data show that gremlin exists in multiple forms endowed with specific bioactivities and provide new insights into the molecular bases of gremlin dimerization. Furthermore, we propose gremlin monomer as a new inhibitor of VEGFR2 signalling during tumor growth

    FGF-trapping hampers cancer stem-like cells in uveal melanoma

    Get PDF
    Background: Cancer stem-like cells (CSCs) are a subpopulation of tumor cells responsible for tumor initiation, metastasis, chemoresistance, and relapse. Recently, CSCs have been identified in Uveal Melanoma (UM), which represents the most common primary tumor of the eye. UM is highly resistant to systemic chemotherapy and effective therapies aimed at improving overall survival of patients are eagerly required. Methods: Herein, taking advantage from a pan Fibroblast Growth Factor (FGF)-trap molecule, we singled out and analyzed a UM-CSC subset with marked stem-like properties. A hierarchical clustering of gene expression data publicly available on The Cancer Genome Atlas (TCGA) was performed to identify patients' clusters. Results: By disrupting the FGF/FGF receptor (FGFR)-mediated signaling, we unmasked an FGF-sensitive UM population characterized by increased expression of numerous stemness-related transcription factors, enhanced aldehyde dehydrogenase (ALDH) activity, and tumor-sphere formation capacity. Moreover, FGF inhibition deeply affected UM-CSC survival in vivo in a chorioallantoic membrane (CAM) tumor graft assay, resulting in the reduction of tumor growth. At clinical level, hierarchical clustering of TCGA gene expression data revealed a strong correlation between FGFs/FGFRs and stemness-related genes, allowing the identification of three distinct clusters characterized by different clinical outcomes. Conclusions: Our findings support the evidence that the FGF/FGFR axis represents a master regulator of cancer stemness in primary UM tumors and point to anti-FGF treatments as a novel therapeutic strategy to hit the CSC component in UM

    Impact of an irreversible β-galactosylceramidase inhibitor on the lipid profile of zebrafish embryos

    Get PDF
    Krabbe disease is a sphingolipidosis characterized by the genetic deficiency of the acid hydrolase beta-galactosylceramidase (GALC). Most of the studies concerning the biological role of GALC performed on Krabbe patients and Galc-deficient twitcher mice (an authentic animal model of the disease) indicate that the pathogenesis of this disorder is the consequence of the accumulation of the neurotoxic GALC substrate beta-galactosylsphingosine (psychosine), ignoring the possibility that this enzyme may exert a wider biological impact. Indeed, limited information is available about the effect of GALC downregulation on the cell lipidome in adult and developing organisms. The teleost zebrafish (Danio rerio) has emerged as a useful platform to model human genetic diseases, including sphingolipidoses, and two GALC co-orthologs have been identified in zebrafish (galca and galcb). Here, we investigated the effect of the competitive and irreversible GALC inhibitor beta-galactosecyclophellitol (GCP) on the lipid profile of zebrafish embryos. Molecular modelling indicates that GCP can be sequestered in the catalytic site of the enzyme and covalently binds human GALC, and the zebrafish Galca and Galcb proteins in a similar manner. Accordingly, GCP inhibits the beta-galactosylceramide hydrolase activity of zebrafish in vitro and in vivo, leading to significant alterations of the lipidome of zebrafish embryos. These results indicate that the lack of GALC activity deeply affects the lipidome during the early stages of embryonic development, and thereby provide insights into the pathogenesis of Krabbe disease

    Atypical Chemokine Receptor 3 Generates Guidance Cues for CXCL12-Mediated Endothelial Cell Migration

    Get PDF
    Chemokine receptor CXCR4, its ligand stromal cell-derived factor-1 (CXCL12) and the decoy receptor atypical chemokine receptor 3 (ACKR3, also named CXCR7), are involved in the guidance of migrating cells in different anatomical districts. Here, we investigated the role of the ACKR3 zebrafish ortholog ackr3b in the vascularization process during embryonic development. Bioinformatics and functional analyses confirmed that ackr3b is a CXCL12-binding ortholog of human ACKR3. ackr3b is transcribed in the endoderm of zebrafish embryos during epiboly and is expressed in a wide range of tissues during somitogenesis, including central nervous system and somites. Between 18 somite and 26 h-post fertilization stages, the broad somitic expression of ackr3b becomes restricted to the basal part of the somites. After ackr3b knockdown, intersomitic vessels (ISVs) lose the correct direction of migration and are characterized by the presence of aberrant sprouts and ectopic filopodia protrusions, showing downregulation of the tip/stalk cell marker hlx1. In addition, ackr3b morphants show significant alterations of lateral dorsal aortae formation. In keeping with a role for ackr3b in endothelial cell guidance, CXCL12 gradient generated by ACKR3 expression in CHO cell transfectants guides human endothelial cell migration in an in vitro cell co-culture chemotaxis assay. Our results demonstrate that ackr3b plays a non-redundant role in the guidance of sprouting endothelial cells during vascular development in zebrafish. Moreover, ACKR3 scavenging activity generates guidance cues for the directional migration of CXCR4-expressing human endothelial cells in response to CXCL12

    Biocompatible cellulose nanocrystal-based Trojan horse enables targeted delivery of nano-Au radiosensitizers to triple negative breast cancer cells

    Get PDF
    : A hybrid cellulose-based programmable nanoplatform for applications in precision radiation oncology is described. Here, sugar heads work as tumor targeting moieties and steer the precise delivery of radiosensitizers, i.e. gold nanoparticles (AuNPs) into triple negative breast cancer (TNBC) cells. This "Trojan horse" approach promotes a specific and massive accumulation of radiosensitizers in TNBC cells, thus avoiding the fast turnover of small-sized AuNPs and the need for high doses of AuNPs for treatment. Application of X-rays resulted in a significant increase of the therapeutic effect while delivering the same dose, showing the possibility to use roughly half dose of X-rays to obtain the same radiotoxicity effect. These data suggest that this hybrid nanoplatform acts as a promising tool for applications in enhancing cancer radiotherapy effects with lower doses of X-rays

    Immune signature in vaccinated versus non-vaccinated aged people with COVID-19 pneumonia

    Get PDF
    Background A definition of the immunological features of COVID-19 pneumonia is needed to support clinical management of aged patients. In this study, we characterized the humoral and cellular immune responses in presence or absence of SARS-CoV-2 vaccination, in aged patients admitted to the IRCCS San Raffaele Hospital (Italy) for COVID-19 pneumonia between November 2021 and March 2022. Methods The study was approved by local authorities. Disease severity was evaluated according to WHO guidelines. We tested: (A) anti-SARS-CoV-2 humoral response (anti-RBD-S IgG, anti-S IgM, anti-N IgG, neutralizing activity against Delta, BA1, BA4/5 variants); (B) Lymphocyte B, CD4 and CD8 T-cell phenotype; (C) plasma cytokines. The impact of vaccine administration and different variants on the immunological responses was evaluated using standard linear regression models and Tobit models for censored outcomes adjusted for age, vaccine doses and gender. Result We studied 47 aged patients (median age 78.41), 22 (47%) female, 33 (70%) older than 70 years (elderly). At hospital admission, 36% were unvaccinated (VACno), whilst 63% had received 2 (VAC2) or 3 doses (VAC3) of vaccine. During hospitalization, WHO score > 5 was higher in unvaccinated (14% in VAC3 vs. 43% in VAC2 and 44% VACno). Independently from vaccination doses and gender, elderly had overall reduced anti-SARS-CoV-2 humoral response (IgG-RBD-S, p = 0.0075). By linear regression, the anti-RBD-S (p = 0.0060), B (p = 0.0079), CD8 (p = 0.0043) and Th2 cell counts (p = 0.0131) were higher in VAC2 + 3 compared to VACno. Delta variant was the most representative in VAC2 (n = 13/18, 72%), detected in 41% of VACno, whereas undetected in VAC3, and anti-RBD-S production was higher in VAC2 vs. VACno (p = 0.0001), alongside neutralization against Delta (p = 0141), BA1 (p = 0.0255), BA4/5 (p = 0.0162). Infections with Delta also drove an increase of pro-inflammatory cytokines (IFN-α, p = 0.0463; IL-6, p = 0.0010). Conclusions Administration of 3 vaccination doses reduces the severe symptomatology in aged and elderly. Vaccination showed a strong association with anti-SARS-CoV-2 humoral response and an expansion of Th2 T-cells populations, independently of age. Delta variants and number of vaccine doses affected the magnitude of the humoral response against the original SARS-CoV-2 and emerging variants. A systematic surveillance of the emerging variants is paramount to define future vaccination strategies

    Addressing climate change with behavioral science:A global intervention tournament in 63 countries

    Get PDF
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions' effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior-several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people's initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors.</p
    corecore