988 research outputs found

    Exploring Amino Acid Auxotrophy in Bifidobacterium bifidum PRL2010

    Get PDF
    The acquisition and assimilation strategies followed by members of the infant gut microbiota to retrieve nitrogen from the gut lumen are still largely unknown. In particular, no information on these metabolic processes is available regarding bifidobacteria, which are among the first microbial colonizers of the human intestine. Here, evaluation of amino acid auxotrophy and prototrophy of Bifidobacterium bifidum, with particular emphasis on B. bifidum strain PRL2010 (LMG S-28692), revealed a putative auxotrophy for cysteine. In addition, we hypothesized that cysteine plays a role in the oxidative stress response in B. bifidum. The use of glutathione as an alternative reduced sulfur compound did not alleviate cysteine auxotrophy of this strain, though it was shown to stimulate expression of the genes involved in cysteine biosynthesis, reminiscent of oxidative stress response. When PRL2010 was grown on a medium containing complex substrates, such as whey proteins or casein hydrolysate, we noticed a distinct growth-promoting effect of these compounds. Transcriptional analysis involving B. bifidum PRL2010 cultivated on whey proteins or casein hydrolysate revealed that the biosynthetic pathways for cysteine and methionine are modulated by the presence of casein hydrolysate. Such findings support the notion that certain complex substrates may act as potential prebiotics for bifidobacteria in their ecological niche

    Carbamazepine-induced thrombocytopenic purpura in a child: Insights from a genomic analysis

    Get PDF
    To the Editor, Carbamazepine is an effective anticonvulsant and has a relatively low incidence of adverse effects, although it occasionally causes hema- tologic disorders. We herein describe a patient with carbamazepine- induced thrombocytopenic purpura that was investigated by pharma- cological, immunological and genomic assays

    Prophages of the genus Bifidobacterium as modulating agents of the infant gut microbiota

    Get PDF
    Phage predation is one of the key forces that shape genetic diversity in bacterial genomes. Phages are also believed to act as modulators of the microbiota composition and, consequently, as agents that drive bacterial speciation in complex bacterial communities. Very little is known about the occurrence and genetic variability of (pro)phages within the genus, a dominant bacterial group of the human infant microbiota. Here, we performed cataloguing of the predicted prophage sequences from the genomes of all currently recognized bifidobacterial type strains. We analysed their genetic diversity and deduced their evolutionary development, thereby highlighting an intriguing origin. Furthermore, we assessed infant gut microbiomes for the presence of (pro)phage sequences and found compelling evidence that these viral elements influence the composition of bifidobacterial communities in the infant gut microbiot

    Designation of optimal reference strains representing the infant gut bifidobacterial species through a comprehensive multi-omics approach

    Get PDF
    The genomic era has resulted in the generation of a massive amount of genetic data concerning the genomic diversity of bacterial taxa. As a result, the microbiological community is increasingly looking for ways to define reference bacterial strains to perform experiments that are representative of the entire bacterial species. Despite this, there is currently no established approach allowing a reliable identification of reference strains based on a comprehensive genomic, ecological, and functional context. In the current study, we developed a comprehensive multi-omics approach that will allow the identification of the optimal reference strains using the Bifidobacterium genus as test case. Strain tracking analysis based on 1664 shotgun metagenomics datasets of healthy infant faecal samples were employed to identify bifidobacterial strains suitable for in silico and in vitro analyses. Subsequently, an ad hoc bioinformatic tool was developed to screen local strain collections for the most suitable species-representative strain alternative. The here presented approach was validated using in vitro trials followed by metagenomics and metatranscriptomics analyses. Altogether, these results demonstrated the validity of the proposed model for reference strain selection, thus allowing improved in silico and in vitro investigations both in terms of cross-laboratory reproducibility and relevance of research findings

    Genetic strategies for sex-biased persistence of gut microbes across human life

    Get PDF
    Although compositional variation in the gut microbiome during human development has been extensively investigated, strain-resolved dynamic changes remain to be fully uncovered. In the current study, shotgun metagenomic sequencing data of 12,415 fecal microbiomes from healthy individuals are employed for strain-level tracking of gut microbiota members to elucidate its evolving biodiversity across the human life span. This detailed longitudinal meta-analysis reveals host sex-related persistence of strains belonging to common, maternally-inherited species, such as Bifidobacterium bifidum and Bifidobacterium longum subsp. longum. Comparative genome analyses, coupled with experiments including intimate interaction between microbes and human intestinal cells, show that specific bacterial glycosyl hydrolases related to host-glycan metabolism may contribute to more efficient colonization in females compared to males. These findings point to an intriguing ancient sex-specific host-microbe coevolution driving the selective persistence in women of key microbial taxa that may be vertically passed on to the next generation.We thank GenProbio Srl for the financial support of the Laboratory of Probiogenomics. Part of this research is conducted using the High- Performance Computing (HPC) facility of the University of Parma. This research has financially been supported by the Programme “FIL-Quota Incentivante” of University of Parma and co-sponsored by Fondazione Cariparma”. D.v.S. is a member of APC Microbiome Ireland funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan (Grant no. SFI/12/RC/2273-P1 and SFI/12/RC/ 2273-P2). G.T. has been supported by “Fondazione Cariparma” in the framework of the project entitled “Parma Microbiota”. LMV has been supported by by “Programma Operativo Nazionale 2014–2020 of the Italian Ministry of University and Research. The funding from Project AGL2017-83653R (Spanish “Ministerio de Ciencia, Innovación y Universidades (MCIU)”, “Agencia Estatal de Investigación (AEI)” and FEDER) is also acknowledged

    Clinical and molecular epidemiology of erythropoietic protoporphyria in Italy

    Get PDF
    Background: Erythropoietic protoporphyria (EPP) is a rare inherited disease associated with heme metabolism, characterized by severe life-long photosensitivity and liver involvement. Objectives: To provide epidemiological data of EPP in Italy. Materials and Methods: Prospective/retrospective data of EPP patients were collected by an Italian network of porphyria specialist centres (Gruppo Italiano Porfiria, GrIP) over a 20-year period (1996-2017). Results: In total, 179 patients (79 females) with a clinical and biochemical diagnosis of EPP were assessed, revealing a prevalence of 3.15 cases per million persons and an incidence of 0.13 cases per million persons/year. Incidence significantly increased after 2009 (due to the availability of alfa-melanotide, which effectively limits skin photosensitivity). Mean age at diagnosis was 28 years, with only 22 patients (12.2%) diagnosed 6410 years old. Gene mutations were assessed in 173 (96.6%) patients; most (164; 91.3%) were FECH mutations on one allele in association with the hypomorphic variant, c.315-48C, on the other (classic EPP), and nine (5.2%) were ALAS2 mutations (X-linked EPP). Only one case of autosomal recessive EPP was observed. Of the 42 different FECH mutations, 15 are novel, three mutations collectively accounted for 45.9% (75/164) of the mutations (c.215dupT [27.2%], c.901_902delTG [11.5%] and c.67\u2009+\u20095G\u2009>\u2009A [7.2%]), and frameshift mutations were prevalent (33.3%). A form of light protection was used by 109/179 (60.8%) patients, and 100 (56%) had at least one \u3b1-melanotide implant. Three cases of severe acute liver involvement, requiring OLT, were observed. Conclusions: These data define, for the first time, the clinical and molecular epidemiology of EPP in Italy

    P09.13 Optimization of a GMP-grade large-scale expansion protocol for cytokine-induced killer cells using gas-permeable static culture flasks

    Get PDF
    Background Cytokine-Induced Killer (CIK) cells are ex vivo expanded T cells with NK cell phenotype. They express both CD3 and CD56 antigens, and exert a potent antitumor activity against a variety of tumors. Several clinical trials demonstrated the safety and the feasibility of CIK cell therapy, with very low side effects and minimal graft-versus-host toxicity. In this study, we developed a GMP-compliant protocol for robust large-scale expansion of CIK cells using G-Rex® gas-permeable static culture flasks. Materials and Methods CIK cells were obtained by stimulating healthy donor PBMCs with GMP-grade IFN-γ, IL-2 and CD3 mAbs, and were cultured in G-Rex6® or G-Rex®6M well plates. CIK cells in G-Rex6® were split only once at day 7 to reduce cell density, whereas the number of CIK cells culterd in G-Rex®6M was not adjusted. In both culture conditions, fresh IL-2 was provided every 3–4 days. We compared these two culture protocols with the culture in standard flasks. Phenotype was analyzed by flow cytometry and cytotoxicity was assessed against several tumor cell lines by calcein-release assay. Results CIK cells cultured in G-Rex6® well plates showed an outstanding cell expansion compared to G-Rex®6M well plates or standard culture flasks, with a 400-fold expansion and a mean of 109 total cells obtained per single well in 14 days, starting from just 2.5 × 106 cells per well. Moreover, the cultures in G-Rex6® were characterized by an higher percentage of CD3+CD56+ cells, as compared to G-Rex®6M or standard culture flasks. Cells cultured in all devices had a comparable expression of NKG2D, NKp30, NKp44, 2B4 receptors. Importantly, CIK cells expanded in G-Rex®6 were as cytotoxic as cells expanded in standard culture flasks. Conversely, CIK cells cultured in G-Rex®6M showed a remarkable reduction of cytotoxicity against tumor cell targets, thus suggesting that cell density during expansion could affect CIK cell activity. Conclusions We propose a GMP-compliant protocol for robust large-scale production of CIK cells. G-Rex® system allows to obtain large amounts of CIK cells highly enriched in the CD3+CD56+ subset and endowed with high cytotoxic activity; this can be accomplished with just a single cell culture split at day 7, which dramatically reduces the culture manipulation as compared to the standard culture flasks. Notably, this strategy can be further and easily scalable to produce CIK cells for clinical immunotherapy applications. Disclosure Information A. Ventura: None. P. Palmerini: None. A. Dalla Pieta: None. R. Sommaggio: None. G. Astori: None. K. Chieregato: None. M. Tisi: None. C. Visco: None. O. Perbellini: None. M. Ruggeri: None. E. Cappuzzello: None. A. Rosato: None

    Efficacy of a new technique - INtubate-RECruit-SURfactant-Extubate - "IN-REC-SUR-E" - in preterm neonates with respiratory distress syndrome: Study protocol for a randomized controlled trial

    Get PDF
    Background: Although beneficial in clinical practice, the INtubate-SURfactant-Extubate (IN-SUR-E) method is not successful in all preterm neonates with respiratory distress syndrome, with a reported failure rate ranging from 19 to 69 %. One of the possible mechanisms responsible for the unsuccessful IN-SUR-E method, requiring subsequent re-intubation and mechanical ventilation, is the inability of the preterm lung to achieve and maintain an "optimal" functional residual capacity. The importance of lung recruitment before surfactant administration has been demonstrated in animal studies showing that recruitment leads to a more homogeneous surfactant distribution within the lungs. Therefore, the aim of this study is to compare the application of a recruitment maneuver using the high-frequency oscillatory ventilation (HFOV) modality just before the surfactant administration followed by rapid extubation (INtubate-RECruit-SURfactant-Extubate: IN-REC-SUR-E) with IN-SUR-E alone in spontaneously breathing preterm infants requiring nasal continuous positive airway pressure (nCPAP) as initial respiratory support and reaching pre-defined CPAP failure criteria. Methods/design: In this study, 206 spontaneously breathing infants born at 24+0-27+6 weeks' gestation and failing nCPAP during the first 24 h of life, will be randomized to receive an HFOV recruitment maneuver (IN-REC-SUR-E) or no recruitment maneuver (IN-SUR-E) just prior to surfactant administration followed by prompt extubation. The primary outcome is the need for mechanical ventilation within the first 3 days of life. Infants in both groups will be considered to have reached the primary outcome when they are not extubated within 30 min after surfactant administration or when they meet the nCPAP failure criteria after extubation. Discussion: From all available data no definitive evidence exists about a positive effect of recruitment before surfactant instillation, but a rationale exists for testing the following hypothesis: a lung recruitment maneuver performed with a step-by-step Continuous Distending Pressure increase during High-Frequency Oscillatory Ventilation (and not with a sustained inflation) could have a positive effects in terms of improved surfactant distribution and consequent its major efficacy in preterm newborns with respiratory distress syndrome. This represents our challenge. Trial registration: ClinicalTrials.gov identifier: NCT02482766. Registered on 1 June 2015

    Genetic determinants in a critical domain of ns5a correlate with hepatocellular carcinoma in cirrhotic patients infected with hcv genotype 1b

    Get PDF
    HCV is an important cause of hepatocellular carcinoma (HCC). HCV NS5A domain‐1 interacts with cellular proteins inducing pro‐oncogenic pathways. Thus, we explore genetic variations in NS5A domain‐1 and their association with HCC, by analyzing 188 NS5A sequences from HCV genotype‐1b infected DAA‐naïve cirrhotic patients: 34 with HCC and 154 without HCC. Specific NS5A mutations significantly correlate with HCC: S3T (8.8% vs. 1.3%, p = 0.01), T122M (8.8% vs. 0.0%, p < 0.001), M133I (20.6% vs. 3.9%, p < 0.001), and Q181E (11.8% vs. 0.6%, p < 0.001). By multivariable analysis, the presence of >1 of them independently correlates with HCC (OR (95%CI): 21.8 (5.7–82.3); p < 0.001). Focusing on HCC‐group, the presence of these mutations correlates with higher viremia (median (IQR): 5.7 (5.4–6.2) log IU/mL vs. 5.3 (4.4–5.6) log IU/mL, p = 0.02) and lower ALT (35 (30–71) vs. 83 (48–108) U/L, p = 0.004), suggesting a role in enhancing viral fitness without affecting necroinflammation. Notably, these mutations reside in NS5A regions known to interact with cellular proteins crucial for cell‐cycle regulation (p53, p85‐PIK3, and β‐ catenin), and introduce additional phosphorylation sites, a phenomenon known to ameliorate NS5A interaction with cellular proteins. Overall, these results provide a focus for further investigations on molecular bases of HCV‐mediated oncogenesis. The role of these NS5A domain‐1 mutations in triggering pro‐oncogenic stimuli that can persist also despite achievement of sustained virological response deserves further investigation

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    corecore