8,017 research outputs found

    Cavity-aided quantum parameter estimation in a bosonic double-well Josephson junction

    Get PDF
    We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation strategies for the inference of the key parameters defining the evolution of the atomic system and based on measurements performed on the cavity field. This would enable {\it de facto} Hamiltonian diagnosis via a highly controllable quantum probe.Comment: 8 pages, 5 figures, RevTeX4; Accepted for publication in Phys. Rev.

    Gravitational waves from stochastic relativistic sources: primordial turbulence and magnetic fields

    Full text link
    The power spectrum of a homogeneous and isotropic stochastic variable, characterized by a finite correlation length, does in general not vanish on scales larger than the correlation scale. If the variable is a divergence free vector field, we demonstrate that its power spectrum is blue on large scales. Accounting for this fact, we compute the gravitational waves induced by an incompressible turbulent fluid and by a causal magnetic field present in the early universe. The gravitational wave power spectra show common features: they are both blue on large scales, and peak at the correlation scale. However, the magnetic field can be treated as a coherent source and it is active for a long time. This results in a very effective conversion of magnetic energy in gravitational wave energy at horizon crossing. Turbulence instead acts as a source for gravitational waves over a time interval much shorter than a Hubble time, and the conversion into gravitational wave energy is much less effective. We also derive a strong constraint on the amplitude of a primordial magnetic field when the correlation length is much smaller than the horizon.Comment: Replaced with revised version accepted for publication in Phys Rev

    Genetical stability and osteogenic ability of mesenchimal stem cells on demineralized bone matrices

    Get PDF
    Journal of Osseointegration Volume 7, Issue 1, 1 March 2015, Pages 2-7 Open Access Genetical stability and osteogenic ability of mesenchimal stem cells on demineralized bone matrices (Article) Pozzuoli, A.a, Gardin, C.b, Aldegheri, R.a, Bressan, E.c, Isola, M.d, Calvo-Guirado, J.L.e, Biz, C.a, Arrigoni, P.a, Feroni, L.b, Zavan, B.b a Department of Surgical,Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy b Department of Biomedical Sciences, University of Padua, Padua, Italy c Department of Neurosciences, University of Padua, Padua, Italy d Department of Animal Medicine, Production and Health (MAPS), Italy e Department of General Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain Hide additional affiliations View references (44) Abstract Aim: Tissue engineering is a rapidly expanding field with regard to the use of biomaterials and stem cells in the orthopedic surgery. Many experimental studies have been done to understand the best characteristics of cells, materials and laboratory methods for safe clinical applications. The aim of this study was to compare the ability of 2 different human demineralized bone matrices (DBMs), the one enriched and the other not enriched with hyaluronic acid, to stimulate in vitro the proliferation and the osteogenic differentiation of human adipose-derived stem cells (ADSCs) seeded onto an osteoconductive scaffold. Materials and Methods: ADSCs were isolated, by enzymatic digestion, from abdominal adipose tissue of 5 patients undergoing cosmetic lipoaspiration surgery. ADSCs were then seeded onto a 3D scaffold in the presence of the two different osteoinductive matrices of human demineralized bone and evaluated for proliferation and osteogenic differentiation. The safety of the methods was verified using array-Comparative Genomic Hybridization (array-CGH). Results: ADSCs were able to differentiate in osteogenic sense. Both DBMs showed the ability to induce osteogenic differentiation of the cells. Conclusion: array-CGH showed no changes at genome level, thus confirming the safety of materials and method

    Dynamics and stability of vortex-antivortex fronts in type II superconductors

    Get PDF
    The dynamics of vortices in type II superconductors exhibit a variety of patterns whose origin is poorly understood. This is partly due to the nonlinearity of the vortex mobility which gives rise to singular behavior in the vortex densities. Such singular behavior complicates the application of standard linear stability analysis. In this paper, as a first step towards dealing with these dynamical phenomena, we analyze the dynamical stability of a front between vortices and antivortices. In particular we focus on the question of whether an instability of the vortex front can occur in the absence of a coupling to the temperature. Borrowing ideas developed for singular bacterial growth fronts, we perform an explicit linear stability analysis which shows that, for sufficiently large front velocities and in the absence of coupling to the temperature, such vortex fronts are stable even in the presence of in-plane anisotropy. This result differs from previous conclusions drawn on the basis of approximate calculations for stationary fronts. As our method extends to more complicated models, which could include coupling to the temperature or to other fields, it provides the basis for a more systematic stability analysis of nonlinear vortex front dynamics.Comment: 13 pages, 8 figure

    Early clinical predictors and correlates of long-term morbidity in bipolar disorder

    Get PDF
    OBJECTIVES: Identifying factors predictive of long-term morbidity should improve clinical planning limiting disability and mortality associated with bipolar disorder (BD). METHODS: We analyzed factors associated with total, depressive and mania-related long-term morbidity and their ratio D/M, as %-time ill between a first-lifetime major affective episode and last follow-up of 207 BD subjects. Bivariate comparisons were followed by multivariable linear regression modeling. RESULTS: Total % of months ill during follow-up was greater in 96 BD-II (40.2%) than 111 BD-I subjects (28.4%; P=0.001). Time in depression averaged 26.1% in BD-II and 14.3% in BD-I, whereas mania-related morbidity was similar in both, averaging 13.9%. Their ratio D/M was 3.7-fold greater in BD-II than BD-I (5.74 vs. 1.96; P<0.0001). Predictive factors independently associated with total %-time ill were: [a] BD-II diagnosis, [b] longer prodrome from antecedents to first affective episode, and [c] any psychiatric comorbidity. Associated with %-time depressed were: [a] BD-II diagnosis, [b] any antecedent psychiatric syndrome, [c] psychiatric comorbidity, and [d] agitated/psychotic depressive first affective episode. Associated with %-time in mania-like illness were: [a] fewer years ill and [b] (hypo)manic first affective episode. The long-term D/M morbidity ratio was associated with: [a] anxious temperament, [b] depressive first episode, and [c] BD-II diagnosis. CONCLUSIONS: Long-term depressive greatly exceeded mania-like morbidity in BD patients. BD-II subjects spent 42% more time ill overall, with a 3.7-times greater D/M morbidity ratio, than BD-I. More time depressed was predicted by agitated/psychotic initial depressive episodes, psychiatric comorbidity, and BD-II diagnosis. Longer prodrome and any antecedent psychiatric syndrome were respectively associated with total and depressive morbidity

    Extended Representations of Observables and States for a Noncontextual Reinterpretation of QM

    Full text link
    A crucial and problematical feature of quantum mechanics (QM) is nonobjectivity of properties. The ESR model restores objectivity reinterpreting quantum probabilities as conditional on detection and embodying the mathematical formalism of QM into a broader noncontextual (hence local) framework. We propose here an improved presentation of the ESR model containing a more complete mathematical representation of the basic entities of the model. We also extend the model to mixtures showing that the mathematical representations of proper mixtures does not coincide with the mathematical representation of mixtures provided by QM, while the representation of improper mixtures does. This feature of the ESR model entails that some interpretative problems raising in QM when dealing with mixtures are avoided. From an empirical point of view the predictions of the ESR model depend on some parameters which may be such that they are very close to the predictions of QM in most cases. But the nonstandard representation of proper mixtures allows us to propose the scheme of an experiment that could check whether the predictions of QM or the predictions of the ESR model are correct.Comment: 17 pages, standard latex. Extensively revised versio

    On the nature of continuous physical quantities in classical and quantum mechanics

    Get PDF
    Within the traditional Hilbert space formalism of quantum mechanics, it is not possible to describe a particle as possessing, simultaneously, a sharp position value and a sharp momentum value. Is it possible, though, to describe a particle as possessing just a sharp position value (or just a sharp momentum value)? Some, such as Teller (Journal of Philosophy, 1979), have thought that the answer to this question is No -- that the status of individual continuous quantities is very different in quantum mechanics than in classical mechanics. On the contrary, I shall show that the same subtle issues arise with respect to continuous quantities in classical and quantum mechanics; and that it is, after all, possible to describe a particle as possessing a sharp position value without altering the standard formalism of quantum mechanics.Comment: 26 pages, LaTe

    Gaseous surface hardening of martensitic stainless steels

    Get PDF
    The present work addresses heat and surface treatments of martensitic stainless steel EN 1.4028. Different combinations of heat treatments and surface treatments were performed: conventional austenitisation, cryogenic treatment and in particular high temperature solution nitriding (HTSN) and low temperature surface hardening (LTSH). Controlled low temperature gaseous treatment was monitored with thermogravimetry. Reflected-light microscopy, X-ray diffraction and hardness-depth profiling were applied for the characterisation of the morphology and composition of the developing case. It was found that cubic lath martensite in conventionally austenitised EN 1.4028 dissolves nitrogen and develops expanded martensite (ferrite) during LTSH. HTSN leads to a microstructure of tetragonal plate martensite and retained austenite. The content of retained austenite can be reduced by a cryo-treatment and develops metastable expanded austenite during LTSH. Consistently, the case depth obtained after LTSH was shallowest after a prior cryo-treatment. Hardness values range up to 18 GPa after LTSH.<br/
    corecore