8,017 research outputs found
Cavity-aided quantum parameter estimation in a bosonic double-well Josephson junction
We describe an apparatus designed to make non-demolition measurements on a
Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This
apparatus contains, as well as the bosonic gas and the trap, an optical cavity.
We show how the interaction between the light and the atoms, under appropriate
conditions, can allow for a weakly disturbing yet highly precise measurement of
the population imbalance between the two wells and its variance. We show that
the setting is well suited for the implementation of quantum-limited estimation
strategies for the inference of the key parameters defining the evolution of
the atomic system and based on measurements performed on the cavity field. This
would enable {\it de facto} Hamiltonian diagnosis via a highly controllable
quantum probe.Comment: 8 pages, 5 figures, RevTeX4; Accepted for publication in Phys. Rev.
Gravitational waves from stochastic relativistic sources: primordial turbulence and magnetic fields
The power spectrum of a homogeneous and isotropic stochastic variable,
characterized by a finite correlation length, does in general not vanish on
scales larger than the correlation scale. If the variable is a divergence free
vector field, we demonstrate that its power spectrum is blue on large scales.
Accounting for this fact, we compute the gravitational waves induced by an
incompressible turbulent fluid and by a causal magnetic field present in the
early universe. The gravitational wave power spectra show common features: they
are both blue on large scales, and peak at the correlation scale. However, the
magnetic field can be treated as a coherent source and it is active for a long
time. This results in a very effective conversion of magnetic energy in
gravitational wave energy at horizon crossing. Turbulence instead acts as a
source for gravitational waves over a time interval much shorter than a Hubble
time, and the conversion into gravitational wave energy is much less effective.
We also derive a strong constraint on the amplitude of a primordial magnetic
field when the correlation length is much smaller than the horizon.Comment: Replaced with revised version accepted for publication in Phys Rev
Genetical stability and osteogenic ability of mesenchimal stem cells on demineralized bone matrices
Journal of Osseointegration
Volume 7, Issue 1, 1 March 2015, Pages 2-7
Open Access
Genetical stability and osteogenic ability of mesenchimal stem cells on demineralized bone matrices (Article)
Pozzuoli, A.a,
Gardin, C.b,
Aldegheri, R.a,
Bressan, E.c,
Isola, M.d,
Calvo-Guirado, J.L.e,
Biz, C.a,
Arrigoni, P.a,
Feroni, L.b,
Zavan, B.b
a Department of Surgical,Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
b Department of Biomedical Sciences, University of Padua, Padua, Italy
c Department of Neurosciences, University of Padua, Padua, Italy
d Department of Animal Medicine, Production and Health (MAPS), Italy
e Department of General Dentistry, Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
Hide additional affiliations
View references (44)
Abstract
Aim: Tissue engineering is a rapidly expanding field with regard to the use of biomaterials and stem cells in the orthopedic surgery. Many experimental studies have been done to understand the best characteristics of cells, materials and laboratory methods for safe clinical applications. The aim of this study was to compare the ability of 2 different human demineralized bone matrices (DBMs), the one enriched and the other not enriched with hyaluronic acid, to stimulate in vitro the proliferation and the osteogenic differentiation of human adipose-derived stem cells (ADSCs) seeded onto an osteoconductive scaffold. Materials and Methods: ADSCs were isolated, by enzymatic digestion, from abdominal adipose tissue of 5 patients undergoing cosmetic lipoaspiration surgery. ADSCs were then seeded onto a 3D scaffold in the presence of the two different osteoinductive matrices of human demineralized bone and evaluated for proliferation and osteogenic differentiation. The safety of the methods was verified using array-Comparative Genomic Hybridization (array-CGH). Results: ADSCs were able to differentiate in osteogenic sense. Both DBMs showed the ability to induce osteogenic differentiation of the cells. Conclusion: array-CGH showed no changes at genome level, thus confirming the safety of materials and method
Dynamics and stability of vortex-antivortex fronts in type II superconductors
The dynamics of vortices in type II superconductors exhibit a variety of
patterns whose origin is poorly understood. This is partly due to the
nonlinearity of the vortex mobility which gives rise to singular behavior in
the vortex densities. Such singular behavior complicates the application of
standard linear stability analysis. In this paper, as a first step towards
dealing with these dynamical phenomena, we analyze the dynamical stability of a
front between vortices and antivortices. In particular we focus on the question
of whether an instability of the vortex front can occur in the absence of a
coupling to the temperature. Borrowing ideas developed for singular bacterial
growth fronts, we perform an explicit linear stability analysis which shows
that, for sufficiently large front velocities and in the absence of coupling to
the temperature, such vortex fronts are stable even in the presence of in-plane
anisotropy. This result differs from previous conclusions drawn on the basis of
approximate calculations for stationary fronts. As our method extends to more
complicated models, which could include coupling to the temperature or to other
fields, it provides the basis for a more systematic stability analysis of
nonlinear vortex front dynamics.Comment: 13 pages, 8 figure
Early clinical predictors and correlates of long-term morbidity in bipolar disorder
OBJECTIVES:
Identifying factors predictive of long-term morbidity should improve clinical planning limiting disability and mortality associated with bipolar disorder (BD).
METHODS:
We analyzed factors associated with total, depressive and mania-related long-term morbidity and their ratio D/M, as %-time ill between a first-lifetime major affective episode and last follow-up of 207 BD subjects. Bivariate comparisons were followed by multivariable linear regression modeling.
RESULTS:
Total % of months ill during follow-up was greater in 96 BD-II (40.2%) than 111 BD-I subjects (28.4%; P=0.001). Time in depression averaged 26.1% in BD-II and 14.3% in BD-I, whereas mania-related morbidity was similar in both, averaging 13.9%. Their ratio D/M was 3.7-fold greater in BD-II than BD-I (5.74 vs. 1.96; P<0.0001). Predictive factors independently associated with total %-time ill were: [a] BD-II diagnosis, [b] longer prodrome from antecedents to first affective episode, and [c] any psychiatric comorbidity. Associated with %-time depressed were: [a] BD-II diagnosis, [b] any antecedent psychiatric syndrome, [c] psychiatric comorbidity, and [d] agitated/psychotic depressive first affective episode. Associated with %-time in mania-like illness were: [a] fewer years ill and [b] (hypo)manic first affective episode. The long-term D/M morbidity ratio was associated with: [a] anxious temperament, [b] depressive first episode, and [c] BD-II diagnosis.
CONCLUSIONS:
Long-term depressive greatly exceeded mania-like morbidity in BD patients. BD-II subjects spent 42% more time ill overall, with a 3.7-times greater D/M morbidity ratio, than BD-I. More time depressed was predicted by agitated/psychotic initial depressive episodes, psychiatric comorbidity, and BD-II diagnosis. Longer prodrome and any antecedent psychiatric syndrome were respectively associated with total and depressive morbidity
Extended Representations of Observables and States for a Noncontextual Reinterpretation of QM
A crucial and problematical feature of quantum mechanics (QM) is
nonobjectivity of properties. The ESR model restores objectivity reinterpreting
quantum probabilities as conditional on detection and embodying the
mathematical formalism of QM into a broader noncontextual (hence local)
framework. We propose here an improved presentation of the ESR model containing
a more complete mathematical representation of the basic entities of the model.
We also extend the model to mixtures showing that the mathematical
representations of proper mixtures does not coincide with the mathematical
representation of mixtures provided by QM, while the representation of improper
mixtures does. This feature of the ESR model entails that some interpretative
problems raising in QM when dealing with mixtures are avoided. From an
empirical point of view the predictions of the ESR model depend on some
parameters which may be such that they are very close to the predictions of QM
in most cases. But the nonstandard representation of proper mixtures allows us
to propose the scheme of an experiment that could check whether the predictions
of QM or the predictions of the ESR model are correct.Comment: 17 pages, standard latex. Extensively revised versio
On the nature of continuous physical quantities in classical and quantum mechanics
Within the traditional Hilbert space formalism of quantum mechanics, it is
not possible to describe a particle as possessing, simultaneously, a sharp
position value and a sharp momentum value. Is it possible, though, to describe
a particle as possessing just a sharp position value (or just a sharp momentum
value)? Some, such as Teller (Journal of Philosophy, 1979), have thought that
the answer to this question is No -- that the status of individual continuous
quantities is very different in quantum mechanics than in classical mechanics.
On the contrary, I shall show that the same subtle issues arise with respect to
continuous quantities in classical and quantum mechanics; and that it is, after
all, possible to describe a particle as possessing a sharp position value
without altering the standard formalism of quantum mechanics.Comment: 26 pages, LaTe
Gaseous surface hardening of martensitic stainless steels
The present work addresses heat and surface treatments of martensitic stainless steel EN 1.4028. Different combinations of heat treatments and surface treatments were performed: conventional austenitisation, cryogenic treatment and in particular high temperature solution nitriding (HTSN) and low temperature surface hardening (LTSH). Controlled low temperature gaseous treatment was monitored with thermogravimetry. Reflected-light microscopy, X-ray diffraction and hardness-depth profiling were applied for the characterisation of the morphology and composition of the developing case. It was found that cubic lath martensite in conventionally austenitised EN 1.4028 dissolves nitrogen and develops expanded martensite (ferrite) during LTSH. HTSN leads to a microstructure of tetragonal plate martensite and retained austenite. The content of retained austenite can be reduced by a cryo-treatment and develops metastable expanded austenite during LTSH. Consistently, the case depth obtained after LTSH was shallowest after a prior cryo-treatment. Hardness values range up to 18 GPa after LTSH.<br/
- …