560 research outputs found

    Ribosome-inactivating and adenine polynucleotide glycosylase activities in Mirabilis jalapa L. tissues.

    Get PDF
    Several tissues of Mirabilis jalapa L. (Nyctaginaceae) were assayed for inhibition of translation by a rabbit reticulocyte lysate (as a signal of ribosome-inactivating activity) and for adenine DNA glycosylase activity, activities that are both due to the presence of a class of enzymes called ribosome-inactivating proteins (RIPs), currently classified as rRNA N-glycosylases (EC ). These activities were highest in seed; intermediate in flower bud, immature seed, sepal + gynoecium, leaf, and root; and very low in all other tissues. By cation-exchange chromatography, four protein peaks with inhibitory activity on cell-free translation were identified in extracts from seeds, and two proteins were isolated from peaks 1 and 4, all of which have the properties of single-chain type 1 RIP. One is Mirabilis antiviral protein (MAP), so far purified only from roots. The second is a new protein that we propose to call MAP-4. The distribution of MAP and MAP-4 in several tissues was determined with a novel experimental approach based on liquid chromatography/mass spectrometry. The direct enzymatic activity of MAP on several substrates is described here for the first time. MAP depurinated not only rRNA in intact ribosomes, thus inhibiting protein synthesis, but also other polynucleotides such as poly(A), DNA, and tobacco mosaic virus RNA. Autologous DNA was depurinated more extensively than other polynucleotides. Therefore, the enzymatic activity of this protein may be better described as adenine polynucleotide glycosylase activity rather than rRNA N-glycosylase activity. Finally, MAP does not cross-react immunologically with other commonly utilized RIPs

    Photoluminescence and electroluminescence of mono- and dialkyl-substituted soluble polythiophenes

    Get PDF
    AbstractWe report a comparison between optical properties (photoluminescence and UV-Vis absorption) and electroluminescence in a series of soluble polyalkylthiophenes with the aim of better understanding the role of different structural parameters, viz. length of side chains and introduction of unsubstituted thiophenes and their position in the backbone, on the electro-optical properties. The potential of these polymers as material for an active film in a single layer light emitting diode is evaluated

    Boson-boson scattering and Higgs production at the LHC from a six fermion point of view: four jets + lν\nu processes at \O(\alpha_{em}^6)

    Full text link
    Boson-boson scattering and Higgs production in boson-boson fusion hold the key to electroweak symmetry breaking. In order to analyze these essential features of the Standard Model we have performed a partonic level study of all processes q1q2q3q4q5q6lνq_1 q_2 \to q_3 q_4 q_5 q_6 l \nu at the LHC using the exact matrix elements at \O(\alpha_{em}^6) provided by \Phase, a new MC generator. These processes include also three boson production and the purely electroweak contribution to \toptop production as well as all irreducible backgrounds. Kinematical cuts have been studied in order to enhance the VV scattering signal over background. \Phase has been compared with different Monte Carlo's showing that a complete calculation is necessary for a correct description of the process.Comment: 26 pages, 19 figure

    Innovative Non-PrP-Targeted Drug Strategy Designed to Enhance Prion Clearance

    Get PDF
    Prion diseases are a group of neurodegenerative disorders characterized by the accumulation of misfolded prion protein (called PrPSc). Although conversion of the cellular prion protein (PrPC) to PrPSc is still not completely understood, most of the therapies developed until now are based on blocking this process. Here, we propose a new drug strategy aimed at clearing prions without any direct interaction with neither PrPC nor PrPSc. Starting from the recent discovery of SERPINA3/SerpinA3n upregulation during prion diseases, we have identified a small molecule, named compound 5 (ARN1468), inhibiting the function of these serpins and effectively reducing prion load in chronically infected cells. Although the low bioavailability of this compound does not allow in vivo studies in prion-infected mice, our strategy emerges as a novel and effective approach to the treatment of prion disease

    Mycobacterial and Human Ferrous Nitrobindins: Spectroscopic and Reactivity Properties

    Get PDF
    Structural and functional properties of ferrous Mycobacterium tuberculosis (Mt-Nb) and human (Hs-Nb) nitrobindins (Nbs) were investigated. At pH 7.0 and 25.0 °C, the unliganded Fe(II) species is penta-coordinated and unlike most other hemoproteins no pH-dependence of its coordination was detected over the pH range between 2.2 and 7.0. Further, despite a very open distal side of the heme pocket (as also indicated by the vanishingly small geminate recombination of CO for both Nbs), which exposes the heme pocket to the bulk solvent, their reactivity toward ligands, such as CO and NO, is significantly slower than in most hemoproteins, envisaging either a proximal barrier for ligand binding and/or crowding of H2O molecules in the distal side of the heme pocket which impairs ligand binding to the heme Fe-atom. On the other hand, liganded species display already at pH 7.0 and 25 °C a severe weakening (in the case of CO) and a cleavage (in the case of NO) of the proximal Fe-His bond, suggesting that the ligand-linked movement of the Fe(II) atom onto the heme plane brings about a marked lengthening of the proximal Fe-imidazole bond, eventually leading to its rupture. This structural evidence is accompanied by a marked enhancement of both ligands dissociation rate constants. As a whole, these data clearly indicate that structural-functional relationships in Nbs strongly differ from what observed in mammalian and truncated hemoproteins, suggesting that Nbs play a functional role clearly distinct from other eukaryotic and prokaryotic hemoproteins

    Molecular profiling of single circulating tumor cells with diagnostic intention

    Get PDF
    Several hundred clinical trials currently explore the role of circulating tumor cell (CTC) analysis for therapy decisions, but assays are lacking for comprehensive molecular characterization of CTCs with diagnostic precision. We therefore combined a workflow for enrichment and isolation of pure CTCs with a non-random whole genome amplification method for single cells and applied it to 510 single CTCs and 189 leukocytes of 66 CTC-positive breast cancer patients. We defined a genome integrity index (GII) to identify single cells suited for molecular characterization by different molecular assays, such as diagnostic profiling of point mutations, gene amplifications and whole genomes of single cells. The reliability of >90% for successful molecular analysis of high-quality clinical samples selected by the GII enabled assessing the molecular heterogeneity of single CTCs of metastatic breast cancer patients. We readily identified genomic disparity of potentially high relevance between primary tumors and CTCs. Microheterogeneity analysis among individual CTCs uncovered pre-existing cells resistant to ERBB2-targeted therapies suggesting ongoing microevolution at late-stage disease whose exploration may provide essential information for personalized treatment decisions and shed light into mechanisms of acquired drug resistance

    Molecular profiling of single circulating tumor cells with diagnostic intention

    Get PDF
    Several hundred clinical trials currently explore the role of circulating tumor cell (CTC) analysis for therapy decisions, but assays are lacking for comprehensive molecular characterization of CTCs with diagnostic precision. We therefore combined a workflow for enrichment and isolation of pure CTCs with a non-random whole genome amplification method for single cells and applied it to 510 single CTCs and 189 leukocytes of 66 CTC-positive breast cancer patients. We defined a genome integrity index (GII) to identify single cells suited for molecular characterization by different molecular assays, such as diagnostic profiling of point mutations, gene amplifications and whole genomes of single cells. The reliability of >90% for successful molecular analysis of high-quality clinical samples selected by the GII enabled assessing the molecular heterogeneity of single CTCs of metastatic breast cancer patients. We readily identified genomic disparity of potentially high relevance between primary tumors and CTCs. Microheterogeneity analysis among individual CTCs uncovered pre-existing cells resistant to ERBB2-targeted therapies suggesting ongoing microevolution at late-stage disease whose exploration may provide essential information for personalized treatment decisions and shed light into mechanisms of acquired drug resistance

    Ligation Tunes Protein Reactivity in an Ancient Haemoglobin: Kinetic Evidence for an Allosteric Mechanism in Methanosarcina acetivorans Protoglobin

    Get PDF
    Protoglobin from Methanosarcina acetivorans (MaPgb) is a dimeric globin with peculiar structural properties such as a completely buried haem and two orthogonal tunnels connecting the distal cavity to the solvent. CO binding to and dissociation from MaPgb occur through a biphasic kinetics. We show that the heterogenous kinetics arises from binding to (and dissociation from) two tertiary conformations in ligation-dependent equilibrium. Ligation favours the species with high binding rate (and low dissociation rate). The equilibrium is shifted towards the species with low binding (and high dissociation) rates for the unliganded molecules. A quantitative model is proposed to describe the observed carbonylation kinetics

    A Functional Variant in ERAP1 Predisposes to Multiple Sclerosis

    Get PDF
    The ERAP1 gene encodes an aminopeptidase involved in antigen processing. A functional polymorphism in the gene (rs30187, Arg528Lys) associates with susceptibility to ankylosying spondylitis (AS), whereas a SNP in the interacting ERAP2 gene increases susceptibility to another inflammatory autoimmune disorder, Crohn's disease (CD). We analysed rs30187 in 572 Italian patients with CD and in 517 subjects suffering from multiple sclerosis (MS); for each cohort, an independent sex- and age-matched control group was genotyped. The frequency of the 528Arg allele was significantly higher in both disease cohorts compared to the respective control population (for CD, OR = 1.20 95%CI: 1.01–1.43, p = 0.036; for RRMS, OR = 1.26; 95%CI: 1.04–1.51, p = 0.01). Meta-analysis with the Wellcome Trust Cases Control Consortium GWAS data confirmed the association with MS (pmeta = 0.005), but not with CD. In AS, the rs30187 variant has a predisposing effect only in an HLA-B27 allelic background. It remains to be evaluated whether interaction between ERAP1 and distinct HLA class I alleles also affects the predisposition to MS, and explains the failure to provide definitive evidence for a role of rs30187 in CD. Results herein support the emerging concept that a subset of master-regulatory genes underlay the pathogenesis of autoimmunity
    corecore