37 research outputs found

    Bone Proteomics Method Optimization for Forensic Investigations

    Get PDF
    \ua9 2024 The Authors. Published by American Chemical Society.The application of proteomic analysis to forensic skeletal remains has gained significant interest in improving biological and chronological estimations in medico-legal investigations. To enhance the applicability of these analyses to forensic casework, it is crucial to maximize throughput and proteome recovery while minimizing interoperator variability and laboratory-induced post-translational protein modifications (PTMs). This work compared different workflows for extracting, purifying, and analyzing bone proteins using liquid chromatography with tandem mass spectrometry (LC-MS)/MS including an in-StageTip protocol previously optimized for forensic applications and two protocols using novel suspension-trap technology (S-Trap) and different lysis solutions. This study also compared data-dependent acquisition (DDA) with data-independent acquisition (DIA). By testing all of the workflows on 30 human cortical tibiae samples, S-Trap workflows resulted in increased proteome recovery with both lysis solutions tested and in decreased levels of induced deamidations, and the DIA mode resulted in greater sensitivity and window of identification for the identification of lower-abundance proteins, especially when open-source software was utilized for data processing in both modes. The newly developed S-Trap protocol is, therefore, suitable for forensic bone proteomic workflows and, particularly when paired with DIA mode, can offer improved proteomic outcomes and increased reproducibility, showcasing its potential in forensic proteomics and contributing to achieving standardization in bone proteomic analyses for forensic applications

    Micropartículas de alginato conteniendo paracetamol

    Get PDF
    Micropartículas conteniendo paracetamol (PCT) han sido obtenidas por emulsificación/gelificación interna de unasolución de alginato dispersada en un aceite vegetal. La morfología y la distribución de tamaño de partícula fuerondeterminadas. Se estudió la concentración de ión calcio resultando ser un parámetro crítico en la producción de lasmicropartículas. Se observó que el incremento en la concentración de calcio produce un aumento en el rendimientototal de micropartículas y en el encapsulación de PCT. La técnica desarrollada permite obtener un sistema concaracterísticas micrométricas óptimas y una mayor eficacia de encapsulación de PCT

    FRA-1 protein overexpression is a feature of hyperplastic and neoplastic breast disorders

    Get PDF
    BACKGROUND: Fos-related antigen 1 (FRA-1) is an immediate early gene encoding a member of AP-1 family of transcription factors involved in cell proliferation, differentiation, apoptosis, and other biological processes. fra-1 gene overexpression has an important role in the process of cellular transformation, and our previous studies suggest FRA-1 protein detection as a useful tool for the diagnosis of thyroid neoplasias. Here we investigate the expression of the FRA-1 protein in benign and malignant breast tissues by immunohistochemistry, Western blot, RT-PCR and qPCR analysis, to evaluate its possible help in the diagnosis and prognosis of breast neoplastic diseases. METHODS: We investigate the expression of the FRA-1 protein in 70 breast carcinomas and 30 benign breast diseases by immunohistochemistry, Western blot, RT-PCR and qPCR analysis. RESULTS: FRA-1 protein was present in all of the carcinoma samples with an intense staining in the nucleus. Positive staining was also found in most of fibroadenomas, but in this case the staining was present both in the nucleus and cytoplasm, and the number of positive cells was lower than in carcinomas. Similar results were obtained from the analysis of breast hyperplasias, with no differences in FRA-1 expression level between typical and atypical breast lesions; however the FRA-1 protein localization is mainly nuclear in the atypical hyperplasias. In situ breast carcinomas showed a pattern of FRA-1 protein expression very similar to that observed in atypical hyperplasias. Conversely, no FRA-1 protein was detectable in 6 normal breast tissue samples used as controls. RT-PCR and qPCR analysis confirmed these results. Similar results were obtained analysing FRA-1 expression in fine needle aspiration biopsy (FNAB) samples. CONCLUSION: The data shown here suggest that FRA-1 expression, including its intracellular localization, may be considered a useful marker for hyperplastic and neoplastic proliferative breast disorders

    Challenging the heterogeneity of disease presentation in malignant melanoma-impact on patient treatment

    Get PDF
    There is an increasing global interest to support research areas that can assist in understanding disease and improving patient care. The National Cancer Institute (NIH) has identified precision medicine-based approaches as key research strategies to expedite advances in cancer research. The Cancer Moonshot program ( https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative ) is the largest cancer program of all time, and has been launched to accelerate cancer research that aims to increase the availability of therapies to more patients and, ultimately, to eradicate cancer. Mass spectrometry-based proteomics has been extensively used to study the molecular mechanisms of cancer, to define molecular subtypes of tumors, to map cancer-associated protein interaction networks and post-translational modifications, and to aid in the development of new therapeutics and new diagnostic and prognostic tests. To establish the basis for our melanoma studies, we have established the Southern Sweden Malignant Melanoma Biobank. Tissues collected over many years have been accurately characterized with respect to the tumor and patient information. The extreme variability displayed in the protein profiles and the detection of missense mutations has confirmed the complexity and heterogeneity of the disease. It is envisaged that the combined analysis of clinical, histological, and proteomic data will provide patients with a more personalized medical treatment. With respect to disease presentation, targeted treatment and medical mass spectrometry analysis and imaging, this overview report will outline and summarize the current achievements and status within malignant melanoma. We present data generated by our cancer research center in Lund, Sweden, where we have built extensive capabilities in biobanking, proteogenomics, and patient treatments over an extensive time period

    HMGA1 drives stem cell, inflammatory pathway, and cell cycle progression genes during lymphoid tumorigenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the <it>high mobility group A1 </it>(<it>HMGA1</it>) gene is widely overexpressed in diverse cancers and portends a poor prognosis in some tumors, the molecular mechanisms that mediate its role in transformation have remained elusive. <it>HMGA1 </it>functions as a potent oncogene in cultured cells and induces aggressive lymphoid tumors in transgenic mice. Because HMGA1 chromatin remodeling proteins regulate transcription, <it>HMGA1 </it>is thought to drive malignant transformation by modulating expression of specific genes. Genome-wide studies to define HMGA1 transcriptional networks during tumorigenesis, however, are lacking. To define the HMGA1 transcriptome, we analyzed gene expression profiles in lymphoid cells from <it>HMGA1a </it>transgenic mice at different stages in tumorigenesis.</p> <p>Results</p> <p>RNA from lymphoid samples at 2 months (before tumors develop) and 12 months (after tumors are well-established) was screened for differential expression of > 20,000 unique genes by microarray analysis (Affymetrix) using a parametric and nonparametric approach. Differential expression was confirmed by quantitative RT-PCR in a subset of genes. Differentially expressed genes were analyzed for cellular pathways and functions using Ingenuity Pathway Analysis. Early in tumorigenesis, HMGA1 induced inflammatory pathways with NFkappaB identified as a major node. In established tumors, HMGA1 induced pathways involved in cell cycle progression, cell-mediated immune response, and cancer. At both stages in tumorigenesis, HMGA1 induced pathways involved in cellular development, hematopoiesis, and hematologic development. Gene set enrichment analysis showed that stem cell and immature T cell genes are enriched in the established tumors. To determine if these results are relevant to human tumors, we knocked-down HMGA1 in human T-cell leukemia cells and identified a subset of genes dysregulated in both the transgenic and human lymphoid tumors.</p> <p>Conclusions</p> <p>We found that <it>HMGA1 </it>induces inflammatory pathways early in lymphoid tumorigenesis and pathways involved in stem cells, cell cycle progression, and cancer in established tumors. <it>HMGA1 </it>also dyregulates genes and pathways involved in stem cells, cellular development and hematopoiesis at both early and late stages of tumorigenesis. These results provide insight into <it>HMGA1 </it>function during tumor development and point to cellular pathways that could serve as therapeutic targets in lymphoid and other human cancers with aberrant <it>HMGA1 </it>expression.</p

    Old Players with a Newly Defined Function: Fra-1 and c-Fos Support Growth of Human Malignant Breast Tumors by Activating Membrane Biogenesis at the Cytoplasm

    Get PDF
    A shared characteristic of tumor cells is their exacerbated growth. Consequently, tumor cells demand high rates of phospholipid synthesis required for membrane biogenesis to support their growth. c-Fos, in addition to its AP-1 transcription factor activity, is the only protein known up to date that is capable of activating lipid synthesis in normal and brain tumor tissue. For this latter activity, c-Fos associates to the endoplasmic reticulum (ER) through its N-terminal domain and activates phospholipid synthesis, an event that requires it Basic Domain (BD) (aa 139–159). Fra-1, another member of the FOS family of proteins, is over-expressed in human breast cancer cells and its BD is highly homologous to that of c-Fos with two conservative substitutions in its basic amino acids. Consequently, herein we examined if Fra-1 and/or c-Fos participate in growth of breast cancer cells by activating phospholipid synthesis as found previously for c-Fos in brain tumors. We found both Fra-1 and c-Fos over-expressed in >95% of human ductal breast carcinoma biopsies examined contrasting with the very low or undetectable levels in normal tissue. Furthermore, both proteins associate to the ER and activate phospholipid synthesis in cultured MCF7 and MDA-MB231 breast cancer cells and in human breast cancer samples. Stripping tumor membranes of Fra-1 and c-Fos prior to assaying their lipid synthesis capacity in vitro results in non-activated lipid synthesis levels that are restored to their initial activated state by addition of Fra-1 and/or c-Fos to the assays. In MDA-MB231 cells primed to proliferate, blocking Fra-1 and c-Fos with neutralizing antibodies blocks lipid-synthesis activation and cells do not proliferate. Taken together, these results disclose the cytoplasmic activity of Fra-1 and c-Fos as potential targets for controlling growth of breast carcinomas by decreasing the rate of membrane biogenesis required for growth
    corecore