234 research outputs found

    A tryptophan-rich peptide acts as a transcription activation domain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic transcription activators normally consist of a sequence-specific DNA-binding domain (DBD) and a transcription activation domain (AD). While many sequence patterns and motifs have been defined for DBDs, ADs do not share easily recognizable motifs or structures.</p> <p>Results</p> <p>We report herein that the N-terminal domain of yeast valyl-tRNA synthetase can function as an AD when fused to a DNA-binding protein, LexA, and turn on reporter genes with distinct LexA-responsive promoters. The transcriptional activity was mainly attributed to a five-residue peptide, WYDWW, near the C-terminus of the N domain. Remarkably, the pentapeptide <it>per se </it>retained much of the transcriptional activity. Mutations which substituted tryptophan residues for both of the non-tryptophan residues in the pentapeptide (resulting in W<sub>5</sub>) significantly enhanced its activity (~1.8-fold), while mutations which substituted aromatic residues with alanine residues severely impaired its activity. Accordingly, a much more active peptide, pentatryptophan (W<sub>7</sub>), was produced, which elicited ~3-fold higher activity than that of the native pentapeptide and the N domain. Further study indicated that W<sub>7 </sub>mediates transcription activation through interacting with the general transcription factor, TFIIB.</p> <p>Conclusions</p> <p>Since W<sub>7 </sub>shares no sequence homology or features with any known transcription activators, it may represent a novel class of AD.</p

    The Genomic Signature of Crop-Wild Introgression in Maize

    Get PDF
    The evolutionary significance of hybridization and subsequent introgression has long been appreciated, but evaluation of the genome-wide effects of these phenomena has only recently become possible. Crop-wild study systems represent ideal opportunities to examine evolution through hybridization. For example, maize and the conspecific wild teosinte Zea mays ssp. mexicana, (hereafter, mexicana) are known to hybridize in the fields of highland Mexico. Despite widespread evidence of gene flow, maize and mexicana maintain distinct morphologies and have done so in sympatry for thousands of years. Neither the genomic extent nor the evolutionary importance of introgression between these taxa is understood. In this study we assessed patterns of genome-wide introgression based on 39,029 single nucleotide polymorphisms genotyped in 189 individuals from nine sympatric maize-mexicana populations and reference allopatric populations. While portions of the maize and mexicana genomes were particularly resistant to introgression (notably near known cross-incompatibility and domestication loci), we detected widespread evidence for introgression in both directions of gene flow. Through further characterization of these regions and preliminary growth chamber experiments, we found evidence suggestive of the incorporation of adaptive mexicana alleles into maize during its expansion to the highlands of central Mexico. In contrast, very little evidence was found for adaptive introgression from maize to mexicana. The methods we have applied here can be replicated widely, and such analyses have the potential to greatly informing our understanding of evolution through introgressive hybridization. Crop species, due to their exceptional genomic resources and frequent histories of spread into sympatry with relatives, should be particularly influential in these studies

    Association of Blood Lead (Pb) and Plasma Homocysteine: A Cross Sectional Survey in Karachi, Pakistan

    Get PDF
    Background: High blood lead (Pb) and hyperhomocysteinemia have been found to be associated with cardiovascular disease (CVD). Mean blood Pb and mean plasma homocysteine levels have been reported to be high in Pakistani population. The objective of the present study was to assess the relationship of blood Pb to the risk of hyperhomocysteinemia in a low income urban population of Karachi, Pakistan. Methodology/Principal Findings: In a cross sectional survey, 872 healthy adults (355 males, 517 females, age 18-60 years) were recruited from a low income urban population of Karachi. Fasting venous blood was obtained and assessed for blood Pb and plasma/serum homocysteine, folate, pyridoxal phosphate (PLP, a coenzymic form of vitamin B6) and vitamin B12. The study population had median (IQR) blood Pb of 10.82 microg/dL (8.29-13.60). Prevalence of high blood Pb (levels\u3e10 microg/dL) was higher in males compared to females (62.5% males vs 56% females, p value=0.05). Mean+/-SD/median (IQR) value of plasma homocysteine was significantly higher in the highest quartile of blood Pb compared to the lowest quartile 16.13+/-11.2 micromol/L vs 13.28+/-9.7micromol/L/13.15 (10.33-17.81) micromol/L vs 11.09 (8.65 14.31) micromol/L (p valu

    Constitutive MAP Kinase Activation in Hematopoietic Stem Cells Induces a Myeloproliferative Disorder

    Get PDF
    Myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPNs) are a group of myeloid neoplasms in which abnormal activation of the Ras signaling pathway is commonly observed. The PI3K/Akt pathway is a known target of Ras; however, activation of the PI3K/Akt pathway has been shown to lead to neoplastic transformation of not only myeloid but also lymphoid cells, suggesting that pathways other than the PI3K/Akt pathway should play a central role in pathogenesis of Ras-mediated MDS/MPN. The MEK/ERK pathway is another downstream target of Ras, which is involved in regulation of cell survival and proliferation. However, the role of the MEK/ERK pathway in the pathogenesis of MDS/MPN remains unclear. Here, we show that introduction of a constitutively activated form of MEK into hematopoietic stem cells (HSCs) causes hematopoietic neoplasms that are limited to MDS/MPNs, despite the multipotent differentiation potential of HSCs. Active MEK-mediated MDS/MPNs are lethal, but are not considered a frank leukemia because it cannot be transplanted into naïve animals. However, transplantation of MDS/MPNs co-expressing active MEK and an anti-apoptotic molecule, Bcl-2, results in T-cell acute lymphocytic leukemia (T-ALL), suggesting that longevity of cells may impact transplantability and alter disease phenotype. Our results clearly demonstrate the proto-oncogenic property of the MEK/ERK pathway in hematopoietic cells, which manifest in MDS/MPN development

    14-3-3σ Regulates β-Catenin-Mediated Mouse Embryonic Stem Cell Proliferation by Sequestering GSK-3β

    Get PDF
    [[abstract]]Background: Pluripotent embryonic stem cells are considered to be an unlimited cell source for tissue regeneration and cell-based therapy. Investigating the molecular mechanism underlying the regulation of embryonic stem cell expansion is thus important. 14-3-3 proteins are implicated in controlling cell division, signaling transduction and survival by interacting with various regulatory proteins. However, the function of 14-3-3 in embryonic stem cell proliferation remains unclear. Methodology and Principal Findings: In this study, we show that all seven 14-3-3 isoforms were detected in mouse embryonic stem cells. Retinoid acid suppressed selectively the expression of 14-3-3σ isoform. Knockdown of 14-3-3σ with siRNA reduced embryonic stem cell proliferation, while only 14-3-3σ transfection increased cell growth and partially rescued retinoid acid-induced growth arrest. Since the growth-enhancing action of 14-3-3σ was abrogated by β-catenin knockdown, we investigated the influence of 14-3-3σ overexpression on β-catenin/GSK-3β. 14-3-3σ bound GSK-3β and increased GSK-3β phosphorylation in a PI-3K/Akt-dependent manner. It disrupted β-catenin binding by the multiprotein destruction complex. 14-3-3σ overexpression attenuated β-catenin phosphorylation and rescued the decline of β-catenin induced by retinoid acid. Furthermore, 14-3-3σ enhanced Wnt3a-induced β-catenin level and GSK-3β phosphorylation. DKK, an inhibitor of Wnt signaling, abolished Wnt3a-induced effect but did not interfere GSK-3β/14-3-3σ binding. Significance:Our findings show for the first time that 14-3-3σ plays an important role in regulating mouse embryonic stem cell proliferation by binding and sequestering phosphorylated GSK-3β and enhancing Wnt-signaled GSK-3β inactivation. 14-3-3σ is a novel target for embryonic stem cell expansion

    Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to pseudomonas aeruginosa infection

    Get PDF
    Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages infected with P. aeruginosa: untreated < treated with GM-CSF < treated with IFN-γ < treated with GM-CSF and IFN-γ

    The utility of Aspirin in dukes C and high risk dukes B colorectal cancer - The ASCOLT study: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High quality evidence indicates that aspirin is effective in reducing colorectal polyps; and numerous epidemiological studies point towards an ability to prevent colorectal cancer. However the role of Aspirin as an adjuvant agent in patients with established cancers remains to be defined. Recently a nested case-control study within the Nurses Health cohort suggested that the initiation of Aspirin <it>after </it>the diagnosis of colon cancer reduced overall colorectal cancer specific mortality. Although this data is supportive of Aspirin's biological activity in this disease and possible role in adjuvant therapy, it needs to be confirmed in a randomized prospective trial.</p> <p>Methods/Design</p> <p>We hypothesize through this randomized, placebo-controlled adjuvant study, that Aspirin in patients with dukes C or high risk dukes B colorectal cancer (ASCOLT) can improve survival in this patient population over placebo control. The primary endpoint of this study is Disease Free Survival and the secondary Endpoint is 5 yr Overall Survival. This study will randomize eligible patients with Dukes C or high risk Dukes B colorectal cancer, after completion of surgery and standard adjuvant chemotherapy (+/- radiation therapy for rectal cancer patients) to 200 mg Aspirin or Placebo for 3 years. Stratification factors include study centre, rectal or colon cancer stage, and type of adjuvant chemotherapy (exposed/not exposed to oxaliplatin). After randomization, patient will be followed up with 3 monthly assessments whilst on study drug and for a total of 5 years. Patients with active peptic ulcer disease, bleeding diathesis or on treatment with aspirin or anti-platelet agents will be excluded from the study.</p> <p>Discussion</p> <p>This study aims to evaluate Aspirin's role as an adjuvant treatment in colorectal cancer. If indeed found to be beneficial, because aspirin is cheap, accessible and easy to administer, it will positively impact the lives of many individuals in Asia and globally.</p> <p>Trials Registration</p> <p>Clinicaltrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00565708">NCT00565708</a></p

    Application of headspace solid-phase microextraction and gas chromatography for the analysis of furfural in crude palm oil

    Get PDF
    Processing of vegetative material containing pentoses has been shown to result in the formation of furfural. Furfural exhibits a spectrophotometric absorption peak at 518 nm when complexed with aniline acetate. Headspace solid-phase microextraction (HS-SPME) method has been successfully used to confirm the presence of furfural in crude palm oil (CPO). Solid phase microextraction (SPME) fiber composed of divinylbenzene/Carboxen/polydimethylsiloxane (DVB/PDMS/CAR) was used to absorb the volatiles in the headspace of the oil. The isolated compounds from the fiber was desorbed and separated on a capillary polar column of a gas chromatograph. Response surface methodology (RSM) was used to optimize the SPME fiber condition for maximum absorption of furfural from CPO. The optimized temperature and time for furfural extraction onto the SPME fiber are 70 °C for 40 min. Oils obtained from the mill were found to contain between 2 and 13% furfural
    corecore