39 research outputs found

    Modeling the Transport and Deposition of Âč⁰Be Produced by the Strongest Solar Proton Event During the Holocene

    Get PDF
    Prominent excursions in the number of cosmogenic nuclides (e.g., Âč⁰Be) around 774 CE/775 document the most severe solar proton event (SPE) throughout the Holocene. Its manifestation in ice cores is valuable for geochronology, but also for solar-terrestrial physics and climate modeling. Using the ECHAM/MESSy Atmospheric Chemistry (EMAC) climate model in combination with the Warning System for Aviation Exposure to SEP (WASAVIES), we investigate the transport, mixing, and deposition of the cosmogenic nuclide Âč⁰Be produced by the 774 CE/775 SPE. By comparing the model results to the reconstructed Âč⁰Be time series from four ice core records, we study the atmospheric pathways of Âč⁰Be from its stratospheric source to its sink at Earth's surface. The reconstructed post-SPE evolution of the Âč⁰Be surface fluxes at the ice core sites is well captured by the model. The downward transport of the Âč⁰Be atoms is controlled by the Brewer-Dobson circulation in the stratosphere and cross-tropopause transport via tropopause folds or large-scale sinking. Clear hemispheric differences in the transport and deposition processes are identified. In both polar regions the Âč⁰Be surface fluxes peak in summertime, with a larger influence of wet deposition on the seasonal Âč⁰Be surface flux in Greenland than in Antarctica. Differences in the peak Âč⁰Be surface flux following the 774 CE/775 SPE at the drilling sites are explained by specific meteorological conditions depending on the geographic locations of the sites

    Ciliary Beating Recovery in Deficient Human Airway Epithelial Cells after Lentivirus Ex Vivo Gene Therapy

    Get PDF
    Primary Ciliary Dyskinesia is a heterogeneous genetic disease that is characterized by cilia dysfunction of the epithelial cells lining the respiratory tracts, resulting in recurrent respiratory tract infections. Despite lifelong physiological therapy and antibiotics, the lungs of affected patients are progressively destroyed, leading to respiratory insufficiency. Recessive mutations in Dynein Axonemal Intermediate chain type 1 (DNAI1) gene have been described in 10% of cases of Primary Ciliary Dyskinesia. Our goal was to restore normal ciliary beating in DNAI1–deficient human airway epithelial cells. A lentiviral vector based on Simian Immunodeficiency Virus pseudotyped with Vesicular Stomatitis Virus Glycoprotein was used to transduce cultured human airway epithelial cells with a cDNA of DNAI1 driven by the Elongation Factor 1 promoter. Transcription and translation of the transduced gene were tested by RT–PCR and western blot, respectively. Human airway epithelial cells that were DNAI1–deficient due to compound heterozygous mutations, and consequently had immotile cilia and no outer dynein arm, were transduced by the lentivirus. Cilia beating was recorded and electron microscopy of the cilia was performed. Transcription and translation of the transduced DNAI1 gene were detected in human cells treated with the lentivirus. In addition, immotile cilia recovered a normal beat and outer dynein arms reappeared. We demonstrated that it is possible to obtain a normalization of ciliary beat frequency of deficient human airway epithelial cells by using a lentivirus to transduce cells with the therapeutic gene. This preliminary step constitutes a conceptual proof that is indispensable in the perspective of Primary Ciliary Dyskinesia's in vivo gene therapy. This is the first time that recovery of cilia beating is demonstrated in this disease

    Modeling the Transport and Deposition of 10Be Produced by the Strongest Solar Proton Event During the Holocene

    Get PDF
    Prominent excursions in the number of cosmogenic nuclides (e.g., 10Be) around 774 CE/775 document the most severe solar proton event (SPE) throughout the Holocene. Its manifestation in ice cores is valuable for geochronology, but also for solar-terrestrial physics and climate modeling. Using the ECHAM/MESSy Atmospheric Chemistry (EMAC) climate model in combination with the Warning System for Aviation Exposure to SEP (WASAVIES), we investigate the transport, mixing, and deposition of the cosmogenic nuclide 10Be produced by the 774 CE/775 SPE. By comparing the model results to the reconstructed 10Be time series from four ice core records, we study the atmospheric pathways of 10Be from its stratospheric source to its sink at Earth's surface. The reconstructed post-SPE evolution of the 10Be surface fluxes at the ice core sites is well captured by the model. The downward transport of the 10Be atoms is controlled by the Brewer-Dobson circulation in the stratosphere and cross-tropopause transport via tropopause folds or large-scale sinking. Clear hemispheric differences in the transport and deposition processes are identified. In both polar regions the 10Be surface fluxes peak in summertime, with a larger influence of wet deposition on the seasonal 10Be surface flux in Greenland than in Antarctica. Differences in the peak 10Be surface flux following the 774 CE/775 SPE at the drilling sites are explained by specific meteorological conditions depending on the geographic locations of the sites

    Spontaneous grafting of 9,10-phenanthrenequinone on porous carbon as an active electrode material in an electrochemical capacitor in an alkaline electrolyte

    No full text
    International audienceSpontaneous grafting of 9,10-phenanthrenequinone (PQ) on Black Pearls carbon by reduction of the corresponding in situ generated diazonium cations has been successfully achieved. Black Pearls was also modified by adsorption from a PQ/acetonitrile solution. Nitrogen gas adsorption measurements revealed that the chemisorption and adsorption of PQ molecules caused a significant decrease of the BET surface area and affected mainly the microporosity of the carbon powder. A detailed characterization by transmission electron microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and electrochemical techniques confirmed the immobilization of PQ molecules at the surface and suggested the formation of a covalent bond between the molecule and the substrate during spontaneous grafting. The loading of PQ molecules on Black Pearls was controlled by changing the concentration of the amine precursor. The superior capacity retention of PQ-grafted Black Pearls electrodes relative to PQ-adsorbed Black Pearls electrodes upon cycling in an alkaline electrolyte provides indirect evidence for the covalent linkage of PQ to the carbon substrate. Finally, a slight modification of the quinone structure leads to a significant difference of the stability of the modified electrodes. PQ-grafted Black Pearls electrodes were found to be much more stable than anthraquinone-grafted Black Pearls electrodes suggesting a better grafting efficiency. Moreover, the proximity of the ketone functionalities in PQ could stabilize the molecule at the carbon surface

    Modeling the Transport and Deposition of 10Be Produced by the Strongest Solar Proton Event During the Holocene

    No full text
    Prominent excursions in the number of cosmogenic nuclides (e.g., 10Be) around 774 CE/775 document the most severe solar proton event (SPE) throughout the Holocene. Its manifestation in ice cores is valuable for geochronology, but also for solar‐terrestrial physics and climate modeling. Using the ECHAM/MESSy Atmospheric Chemistry (EMAC) climate model in combination with the Warning System for Aviation Exposure to SEP (WASAVIES), we investigate the transport, mixing, and deposition of the cosmogenic nuclide 10Be produced by the 774 CE/775 SPE. By comparing the model results to the reconstructed 10Be time series from four ice core records, we study the atmospheric pathways of 10Be from its stratospheric source to its sink at Earth's surface. The reconstructed post‐SPE evolution of the 10Be surface fluxes at the ice core sites is well captured by the model. The downward transport of the 10Be atoms is controlled by the Brewer‐Dobson circulation in the stratosphere and cross‐tropopause transport via tropopause folds or large‐scale sinking. Clear hemispheric differences in the transport and deposition processes are identified. In both polar regions the 10Be surface fluxes peak in summertime, with a larger influence of wet deposition on the seasonal 10Be surface flux in Greenland than in Antarctica. Differences in the peak 10Be surface flux following the 774 CE/775 SPE at the drilling sites are explained by specific meteorological conditions depending on the geographic locations of the sites.Plain Language Summary: During large solar storms, high energy particles are hurled with enormous force toward Earth by the Sun. As these particles collide with atmospheric constituents (such as oxygen or nitrogen) unique nuclides of cosmogenic origin are formed in the higher atmosphere. From there they are transported downwards and finally precipitate at the surface due to different sink processes. Their imprints can be conserved over thousands of years within natural archives, such as ice cores or tree rings. Analysis of these natural archives around the globe indicates that the strongest solar storm over the last 10.000 years happened around 774 CE/775. This event is estimated to have been up to two orders of magnitude stronger, than the strongest known events documented for the satellite era. In this study, we model and analyze the transport and deposition of the cosmogenic nuclides produced by the extreme 774 CE/775 event, by applying a new experimental setup. Our results might help to interpret the fingerprints of historical extreme events with respect to the prevailing atmospheric conditions.Key Points: The modeled transport and deposition of the cosmogenic nuclide10Be produced by the 774/775 solar proton event was compared to 10Be ice core records. Hemispheric differences in stratospheric and cross‐tropopause transport, and deposition were identified, with polar summertime maxima of 10Be surface flux. Differences in reconstructed10Be surface fluxes are explained by the local ratio of wet to dry deposition maximizing in the summertime.MEXT Japan Society for the Promotion of Science http://dx.doi.org/10.13039/50110000169

    Post-effetti di carenza idrica di lungo periodo in pinete mediterranee.

    No full text
    Post-effects of long-term water drougth in Mediterranean pine stands. Two studies were carried out on the effects of imposed water shortage in two Mediterranean pine stands growing in Southern Italy. The impact of a severe reduction in water availability on the growth of 50-year old Pinus halepensistrees (growing along the Ionian coast of Puglia, experiment 1) and 35-year-old Pinus lariciotrees growing in Sila (Calabria Region, experiment 2) were studied. The experimental effects were followed for 12 months in experiment 1 and for 36 months in experiment 2, comparing “covered” plots and “uncovered” control plots. The experiment was carried out on plants of the same plots, to check if long-term water shortage caused post-effects on their growth. This research aimed to investigate what pines suffer during last years, considering the beginning of possible long-term effect on these pine forests. The results were different for the species. After treatment, the reduction of radial growth Pinus halepensiscovered plants was observed, while a positive trend of growth of control trees was observed. A recovering of both covered and control Pinus lariciotrees growth was observed

    Intestinal parasitic infections in HIV-infected patients, Lao People's Democratic Republic

    Get PDF
    HIV infection is an emerging problem in Laos. We conducted the first prospective study on intestinal parasites, including opportunistic protozoa, in newly diagnosed HIV infected patients, with or without diarrhea. The aims were to describe the spectrum of infections, to determine their prevalence and to assess their associations with diarrhea, CD4 cell count, place of residence and living conditions.; One to three stool samples over consecutive days were obtained from 137 patients. The Kato thick smear method, formalin-ethyl concentration and specific stains for coccidia and microsporidia diagnosis were performed on 260 stool samples. Baseline characteristics regarding relevant demographics, place of residence and living conditions, clinical features including diarrhea, were collected using a standardized questionnaire.; The 137 patients were young (median age: 36 years) and severely immunocompromised (83.9% at WHO stage 3 or 4, median CD4 cell count: 41/mm3). Diarrhea was present in 43.0% of patients. Parasite infection was found in 78.8% of patients, infection with at least two species in 49.6%. Prevalence rates of protozoan and helminth infections were similar (54.7% and 58.4% respectively). Blastocystis sp. was the most frequent protozoa (26.3%). Cryptosporidium sp., Cytoisospora belli and microsporidia, found at low prevalence rates (6.6%, 4.4%, 2.9%, respectively), were described for the first time in Laos. Cryptosporidium sp. was associated with persistent diarrhea. Strongyloides stercoralis was the most prevalent helminth following Opisthorchis viverrini (20.4% and 47.5% respectively). The most immunocompromised patients, as assessed by a CD4 count ≀ 50 cells/mm3, were more likely to be infected with intestinal parasites.; HIV infection was mainly diagnosed at an advanced stage of immunosuppression in Lao patients. Intestinal parasite infections were highly prevalent regardless of their diarrheal status. Opportunistic infections were reported. Improving the laboratory diagnosis of intestinal parasite infections and the knowledge on their local risk factors is warranted
    corecore