978 research outputs found
Multi-state and non-volatile control of graphene conductivity with surface electric fields
Planar electrodes patterned on a ferroelectric substrate are shown to provide
lateral control of the conductive state of a two-terminal graphene stripe. A
multi-level and on-demand memory control of the graphene resistance state is
demonstrated under low sub-coercive electric fields, with a susceptibility
exceeding by more than two orders of magnitude those reported in a vertical
gating geometry. Our example of reversible and low-power lateral control over
11 memory states in the graphene conductivity illustrates the possibility of
multimemory and multifunctional applications, as top and bottom inputs remain
accessible.Comment: Graphene ferroelectric lateral structure for multi-state and
non-volatile conductivity control, 4 pages, 4 figure
Spindle Frequency Activity Following Simulated Jetlag in Young Adults
Recent evidence indicates that sleep spindles and spindle frequency activity display a circadian pattern. The temporal distribution of spindle frequency activity during the night should thus be sensitive to the circadian phase at which sleep is scheduled. The aim of the present study is to test the effect of a 5-hour advance of the sleep schedule on spindle frequency activity during sleep in healthy young subjects
Subjective Assessment of Sleep Quality Across the Menstrual Cycle in Women with Premenstrual Dysphoric Disorder
Existing evidence demonstrates that sleep structure varies across the menstrual cycle in healthy women (1). These variations could be more severe in women suffering from premenstrual dysphoric disorder (PMDD) (2). In a previous study of healthy women, subjective sleep quality was shown to be constant across both phases of the menstrual cycle (3). The current study aims to test whether there exists a variation in subjective sleep quality of PMDD sufferers across the follicular and luteal phases of the menstrual cycle
Short-Range Structure of Amorphous Calcium Hydrogen Phosphate
Copyright © 2019 American Chemical Society. Calcium orthophosphates (CaPs) are the hard constituents of bones and teeth, and thus of ultimate importance to humankind, while amorphous CaPs (ACPs) may play crucial roles in CaP biomineralization. Among the various ACPs with Ca/P atomic ratios between 1.0-1.5, an established structural model exists for basic ACP (Ca/P = 1.5), while those of other ACPs remain unclear. Herein, the structure of amorphous calcium hydrogen phosphate (ACHP; Ca/P = 1.0) obtained via aqueous routes at near-neutral pH values, without stabilizers, was studied by experiments (mainly, TEM with ED, XRD, IR, and NMR spectroscopies, as well as XAS) and computer simulation. Our results globally show that ACHP has a distinct short-range structure, and we propose calcium hydrogen phosphate clusters (CHPCs) as its basic unit. This model is consistent with both computer simulations and the experimental results, where CHPCs are arranged together with water molecules to build up ACHP. We demonstrate that Posner's clusters, which are conventionally accepted to be the building unit of basic ACPs, do not represent the short-range structure of ACHP, as Posner's clusters and CHPCs are structurally distinct. This finding is important not only for the determination of the structures of diverse ACPs with varying Ca/P atomic ratios but also for fundamental understanding of a major mineral class that is central to biomineralization in vertebrates and, thus, humans, in particular.
Exposition domiciliaire aux moisissures : quel impact sur le statut aspergillaire du patient atteint de mucoviscidose ?
National audienc
Giant slip lengths of a simple fluid at vibrating solid interfaces
It has been shown recently [PRL 102, 254503 (2009)] that in the plane-plane
configuration a mechanical resonator vibrating close to a rigid wall in a
simple fluid can be overdamped to a frozen regime. Here, by solving
analytically the Navier Stokes equations with partial slip boundary conditions
at the solid fluid interface, we develop a theoretical approach justifying and
extending these earlier findings. We show in particular that in the perfect
slip regime the above mentioned results are, in the plane-plane configuration,
very general and robust with respect to lever geometry considerations. We
compare the results with those obtained previously for the sphere moving
perpendicularly and close to a plane in a simple fluid and discuss in more
details the differences concerning the dependence of the friction forces with
the gap distance separating the moving object (i.e., plane or sphere) from the
fixed plane. Finally, we show that the submicron fluidic effect reported in the
reference above, and discussed further in the present work, can have dramatic
implications in the design of nano-electromechanical systems (NEMS).Comment: submitted to PRE (see also PRL 102, 254503 (2009)
Unveiling the intruder deformed 0 state in Si
The 0 state in Si has been populated at the {\sc Ganil/Lise3}
facility through the -decay of a newly discovered 1 isomer in
Al of 26(1) ms half-life. The simultaneous detection of pairs
allowed the determination of the excitation energy E(0)=2719(3) keV and
the half-life T=19.4(7) ns, from which an electric monopole strength of
(E0)=13.0(0.9) was deduced. The 2 state is
observed to decay both to the 0 ground state and to the newly observed
0 state (via a 607(2) keV transition) with a ratio
R(2)=1380(717). Gathering all
information, a weak mixing with the 0 and a large deformation parameter
of =0.29(4) are found for the 0 state, in good agreement with
shell model calculations using a new {\sc sdpf-u-mix} interaction allowing
\textit{np-nh} excitations across the N=20 shell gap.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
- …