159 research outputs found

    Multi-Sensorial Interface for 3D Teleoperation at Micro and Nanoscale

    No full text
    International audienceThis paper presents the design of a new tool for 3D manipulations at micro and nanoscale based on the coupling between a high performance haptic system (the ERGOS system) and two Atomic Force Microscope (AFM) probes mounted on quartz tuning fork resonators, acting as a nano tweezers. This unique combination provides new characteristics and possibilities for the localization and manipulation of (sub)micronic objects in 3 dimensions. The nano robot is controlled through a dual sensorial interface including 3D haptic and visual rendering, it is capable of performing a number of real-time tasks on different samples in order to analyse their dynamic effects when interacting with the AFM tips. The goal is then to be able to compare mechanical properties of different matters (stiffness of soft or hard matter) and to handle submicronic objects in 3 dimensions

    Collective magnetotaxis of microbial holobionts is optimized by the three-dimensional organization and magnetic properties of ectosymbionts

    Get PDF
    International audienceOver the last few decades, symbiosis and the concept of holobiont—a host entity with a population of symbionts—have gained a central role in our understanding of life functioning and diversification. Regardless of the type of partner interactions, understanding how the biophysical properties of each individual symbiont and their assembly may generate collective behaviors at the holobiont scale remains a fundamental challenge. This is particularly intriguing in the case of the newly discovered magnetotactic holobionts (MHB) whose motility relies on a collective magnetotaxis (i.e., a magnetic field-assisted motility guided by a chemoaerotaxis system). This complex behavior raises many questions regarding how magnetic properties of symbionts determine holobiont magnetism and motility. Here, a suite of light-, electron- and X-ray-based microscopy techniques [including X-ray magnetic circular dichroism (XMCD)] reveals that symbionts optimize the motility, the ultrastructure, and the magnetic properties of MHBs from the microscale to the nanoscale. In the case of these magnetic symbionts, the magnetic moment transferred to the host cell is in excess (10 2 to 10 3 times stronger than free-living magnetotactic bacteria), well above the threshold for the host cell to gain a magnetotactic advantage. The surface organization of symbionts is explicitly presented herein, depicting bacterial membrane structures that ensure longitudinal alignment of cells. Magnetic dipole and nanocrystalline orientations of magnetosomes were also shown to be consistently oriented in the longitudinal direction, maximizing the magnetic moment of each symbiont. With an excessive magnetic moment given to the host cell, the benefit provided by magnetosome biomineralization beyond magnetotaxis can be questioned

    FIREBall-2: flight preparation of a proven balloon payload to image the intermediate redshift circumgalactic medium

    Full text link
    FIREBall-2 is a stratospheric balloon-borne 1-m telescope coupled to a UV multi-object slit spectrograph designed to map the faint UV emission surrounding z~0.7 galaxies and quasars through their Lyman-alpha line emission. This spectro-imager had its first launch on September 22nd 2018 out of Ft. Sumner, NM, USA. Because the balloon was punctured, the flight was abruptly interrupted. Instead of the nominal 8 hours above 32 km altitude, the instrument could only perform science acquisition for 45 minutes at this altitude. In addition, the shape of the deflated balloon, combined with a full Moon, revealed a severe off-axis scattered light path, directly into the UV science detector and about 100 times larger than expected. In preparation for the next flight, and in addition to describing FIREBall-2's upgrade, this paper discusses the exposure time calculator (ETC) that has been designed to analyze the instrument's optimal performance (explore the instrument's limitations and subtle trade-offs)

    Functional characterization of the novel sequence variant p.S304R in the hinge region of TSHR in a congenital hypothyroidism patients and analogy with other formerly known mutations of this gene portion

    Get PDF
    Context: Thyroid dysgenesis may be associated with loss-of-function mutations in the thyrotropin receptor (TSHR) gene. Objectives: The aim of this study was to characterize a novel TSHR gene variant found in one patient harboring congenital hypothyroidism (CH) from a cohort of patients with various types of thyroid defects. Materials and methods: This cross-sectional cohort study involved 118 patients with CH and their family members, including 45 with familial and 73 with sporadic diseases. The thyroid gland was normal in 23 patients, 25 patients had hypoplasia, 25 hemithyroid agenesis, 21 had athyreosis, and 21 had ectopy. Genomic DNA was extracted, and 10 exons of the TSHR gene were amplified and sequenced. Mutations in other candidate genes were investigated. Ortholog alignment was performed, and TSHR functional assays were evaluated. Results: We identified one previously unknown missense variation in the hinge region (HinR) of the TSHR gene (p.S304R) in one patient with thyroid hypoplasia. This variant is conserved in our ortholog alignment. However, the p.S304R TSHR variant presented a normal glycosylation pattern and signal transduction activity in functional analysis. Conclusion: We report the ocurrence of a novel nonsynonymous substitution in the HinR of the large N-terminal extracellular domain of the TSHR gene in a patient with thyroid hypoplasia. In contrast with four others in whom TSHR mutations of the hinge portion were previously identified, the p.S304R TSHR variation neither affected TSH binding nor cAMP pathway activation. This TSHR gene variant was documented in a CH patient, but the current data do not support its role in the clinical phenotype

    Ovarian Real-World International Consortium (ORWIC): A multicentre, real-world analysis of epithelial ovarian cancer treatment and outcomes

    Get PDF
    IntroductionMuch drug development and published analysis for epithelial ovarian cancer (EOC) focuses on early-line treatment. Full sequences of treatment from diagnosis to death and the impact of later lines of therapy are rarely studied. We describe the establishment of an international network of cancer centers configured to compare real-world treatment pathways in UK, Portugal, Germany, South Korea, France and Romania (the Ovarian Real-World International Consortium; ORWIC).Methods3344 patients diagnosed with EOC (2012-2018) were analysed using a common data model and hub and spoke programming approach applied to existing electronic medical records. Consistent definition of line of therapy between sites and an efficient approach to analysis within the limitations of local information governance was achieved.ResultsMedian age of participants was 53-67 years old and 5-29% were ECOG >1. Between 62% and 84% of patients were diagnosed with late-stage disease (FIGO III-IV). Sites treating younger and fitter patients had higher rates of debulking surgery for those diagnosed at late stage than sites with older, more frail patients. At least 21% of patients treated with systemic anti-cancer therapy (SACT) had recurrent disease following second-line therapy (2L); up to 11 lines of SACT treatment were recorded for some patients. Platinum-based SACT was consistently used across sites at 1L, but choices at 2L varied, with hormone therapies commonly used in the UK and Portugal. The use (and type) of maintenance therapy following 1L also varied. Beyond 2L, there was little consensus between sites on treatment choice: trial compounds and unspecified combinations of other agents were common.DiscussionSpecific treatment sequences are reported up to 4L and the establishment of this network facilitates future analysis of comparative outcomes per line of treatment with the aim of optimizing available options for patients with recurrent EOC. In particular, this real-world network can be used to assess the growing use of PARP inhibitors. The real-world optimization of advanced line treatment will be especially important for patients not usually eligible for involvement with clinical trials. The resources to enable this analysis to be implemented elsewhere are supplied and the network will seek to grow in coverage of further sites

    Unbiased Reconstruction of a Mammalian Transcriptional Network Mediating Pathogen Responses

    Get PDF
    Models of mammalian regulatory networks controlling gene expression have been inferred from genomic data but have largely not been validated. We present an unbiased strategy to systematically perturb candidate regulators and monitor cellular transcriptional responses. We applied this approach to derive regulatory networks that control the transcriptional response of mouse primary dendritic cells to pathogens. Our approach revealed the regulatory functions of 125 transcription factors, chromatin modifiers, and RNA binding proteins, which enabled the construction of a network model consisting of 24 core regulators and 76 fine-tuners that help to explain how pathogen-sensing pathways achieve specificity. This study establishes a broadly applicable, comprehensive, and unbiased approach to reveal the wiring and functions of a regulatory network controlling a major transcriptional response in primary mammalian cells

    Préparation centralisée des anticancéreux injectables (cadre réglementaire et perspectives d'évolution d'une activité hospitalière)

    No full text
    L'ensemble des exigences opposables qui régissent l'activité de préparation centralisée des anticancéreux injectables évolue. Le cadre réglementaire actuel est constitué des textes de loi, décrets et arrêtés. Il est complété par des référentiels et appuyé par des dispositions contractuelles (CBUMPP). Grâce à l'harmonisation et à l'évolution des pratiques, de nouvelles recommandations sont émises par des groupes de travail et des sociétés savantes. Ces recommandations dont certaines deviendront des exigences opposables dessinent le futur visage de l'activité de préparation centralisée. Les exigences validées par les pouvoirs publics auront pour objectifs majeurs l'amélioration de la qualité et de la sécurité des soins, ainsi que la maîtrise des dépenses de santé. Les anticiper permettrait au pharmacien responsable d'une unité de préparation centralisée de s'adapter rapidement, et d'optimiser l'activité en terme de sécurité, de qualité et de coût.CLERMONT FD-BCIU-Santé (631132104) / SudocLYON1-BU Santé (693882101) / SudocSudocFranceF
    corecore