217 research outputs found

    Obsesiones de una vida escritura y pintura en Juan Emar

    Get PDF
    Investigación financiada por el Fondart entre los meses de noviembre y diciembre del año 2005 en Francia. Durante el desarrollo de mi investigación, tuve la oportunidad de leer un conjunto de cartas inéditas escritas por Emar entre los años 40 y 60, dirigidas a Pépèche -Alice de la Martinière-. A pesar de tener un acuerdo con el dueño de este material, inexplicablemente, después de mi llegada a París -y por razones nunca del todo esclarecidas-, se me impidió revisarlo. Sin embargo, una copia de ese conjunto de cartas se encontraba en el Centre de Recherches Latino-américaines (CRLA – Archivos de la Université de Poitiers-CNRS). Agradezco enormemente la ayuda y la confianza del sr. Fernando Moreno, director del centro, y de su equipo, en el desarrollo de la investigación

    Mudflow Modeling in the Copiapó Basin, Chile

    Get PDF
    [EN] Extreme precipitation events that occurred between March 24 and March 26 of 2015 in the region of the Atacama Desert (26-29°S) left around 30 000 victims, being one of the biggest events over the past 50 years, with total a cost of reconstruction of about 1.5 billion dollars. The mudflows which increased during the flashflood inundated much of the city of Copiapó and Tierra Amarilla. This manuscript aims to model the mudflow of March 2015 in the Río Copiapó, specifically in the towns of Copiapó and Tierra Amarilla. The modeling process is performed using the Rapid Mass Movement Simulation Model (RAMMS) that allows modeling the dynamics of the mudflow in two dimensions, only using the topographic features of the modeling domain. Calibration of the model was carried out successfully using data from inundation heights captured around the city after the 2015 event. A detailed analysis of the hydrometeorological event is carried out using satellite images obtained from Multi-satellite Precipitation Analysis (TMPA), and pluviometric and hydrographic data available in the Copiapó River basin. The simulation of the flood is reproduced with maps of inundation heights associated with two modeling scenarios. The maximum flood heights are ultimately used for developing risk maps at both sites. According to our results, the RAMMS model is an appropriate tool for modeling mudflow and mapping flood risk to improve hydrological risk management in arid and semiarid basins of Chile[ES] Los eventos extremos de precipitación intensa que se produjeron entre el 24 y 26 de marzo de 2015 en la región del Desierto de Atacama (26-29°S), en el Norte de Chile, dejaron alrededor de 30 000 damnificados, siendo uno de los eventos de mayores magnitudes de los últimos 50 años, y que tuvo un costo de reconstrucción de alrededor de $1.5 billones de dólares. Los flujos de detritos que se incrementaron durante la crecida inundaron gran parte de las ciudades de Copiapó y Tierra Amarilla. Este manuscrito tiene por objetivo modelar la crecida aluvional de marzo de 2015 en la cuenca del Río Copiapó, específicamente en las localidades de Copiapó y Tierra Amarilla. La modelación se lleva a cabo utilizando el modelo Rapid Mass Movement Simulation (RAMMS) que permite modelar la dinámica de la crecida aluvional en dos dimensiones, utilizando las características topográficas de los dominios de modelación. La calibración del modelo fue llevada a cabo satisfactoriamente utilizando datos de alturas capturados en terreno después de la crecida del año 2015. Un análisis detallado del evento hidrometeorológico es llevado a cabo utilizando imágenes satelitales obtenidas desde Multi-satellite Precipitation Analysis (TMPA), así como datos pluviométricos e hidrográficos disponibles en la cuenca del Río Copiapó. La simulación de la crecida es reproducida con mapas de alturas de inundación asociados a dos escenarios de modelación. Las alturas máximas de inundación son finalmente utilizadas para el desarrollo de mapas de riesgos en ambas localidades. De acuerdo a nuestros resultados, el modelo RAMMS es una herramienta apropiada para modelar crecidas aluvionales y elaborar mapas de riesgos de inundación para mejorar la gestión de riesgos hidrológicos en cuencas áridas y semiáridas de Chile.Los autores de este manuscrito agradecen el financiamiento proporcionado por La Fundación Centro Nacional del Medio Ambiente de Chile (CENMA) para llevar a cabo este estudio. Adicionalmente, se agradece la contribución de datos de alturas de inundación proporcionados por Tatiana Izquierdo (académica de la Universidad de Atacama) los cuales permitieron la calibración del modelo RAMMS.Valdés-Pineda, R.; Valdés, JB.; García-Chevesich, P. (2017). Modelación de Crecidas Aluvionales en la Cuenca del Río Copiapó, Chile. Ingeniería del Agua. 21(2):135-152. doi:10.4995/ia.2017.7366.SWORD135152212Abrams, M. 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA's Terra platform. International Journal of Remote sensing, 21(5), 847-859. https://doi.org/10.1080/014311600210326Barrett, B. S., Campos, D. A., Veloso, J. V., Rondanelli, R. 2016. Extreme temperature and precipitation events in March 2015 in central and northern Chile. Journal of Geophysical Research: Atmospheres, 121(9): 4563-4580. https://doi.org/10.1002/2016jd024835Bontemps, S., Defourny, P., Bogaert, E. V., Arino, O., Kalogirou, V., Perez, J. R. 2011. GLOBCOVER 2009-Products description and validation report.Bozkurt, D., Rondanelli, R., Garreaud, R., Arriagada, A. 2016. Impact of warmer eastern tropical Pacific SST on the March 2015 Atacama floods. Monthly Weather Review, 144(11), 4441-4460. https://doi.org/10.1175/MWR-D-16-0041.1Christen, M., Bartelt, P., Kowalski, J., Stoffel, L. 2008. Calculation of dense snow avalanches in three-dimensional terrain with the numerical simulation program RAMMS. In Proceedings Whistler 2008 International Snow Science Workshop, September 21-27, 2008 (p. 709).Christen, M., Kowalski, J., Bartelt, P. 2010. RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, 63(1), 1-14. https://doi.org/10.1016/j.coldregions.2010.04.005Ferrando, R., Fuentes, F., Coloma, F., Merino. 2015. Efectos Geológicos del Evento Meteorológico del 24 y 25 de marzo De 2015: Fotointerpretación y Reconocimiento en Terreno del Efecto de Aluviones e Inundaciones en las zonas de Tierra Amarilla y Nantoco: Zona de Inundación y zonas propuestas para Evacuación, Campamento y Acopio. SERNAGIOMIN.Izquierdo, T., Abad, M. Bernárdez, E. 2016. Catastrophic flooding caused by a mudflow in the urban area of Copiapó (Atacama Desert, northern Chile). International Conference on Urban Risks.MOP-DGA, C. I. 2004. Diagnóstico y clasificación de los cursos y cuerpos de agua según objetivo de calidad. Cuenca Quebrada de Tarapacá. Santiago, Chile.Naranjo, J. A., Olea-Encina, P. 2015. Descargas aluviales durante la tormenta del desierto de Atacama en marzo de 2015, Chile. SERNAGIOMIN.Pizarro-Tapia, R., Valdés-Pineda, R., Olivares, C., González, P. A. 2014. Development of Upstream Data-Input Models to Estimate Downstream Peak Flow in Two Mediterranean River Basins of Chile. Open Journal of Modern Hydrology, 4(4), 132-143. https://doi.org/10.4236/ojmh.2014.44013Quan, L. 2012. Dynamic numerical run-out modeling for quantitative landslide risk assessment. Thesis of University of Twente, ITC, 206:1-237.Raïmat, C., Riera, E., Graf, C., Luis-Fonseca, R., Fañanás, C., Hurlimann Ziegler, M. 2013. Experiencia de la aplicación de RAMMS para la modelización de flujo tras la aplicación de las soluciones flexibles VX en el barranc de Portainé. In VIII Simposio Nacional sobre Taludes y Laderas Inestables, 1131-1144. Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE).Tachikawa, T., Hato, M., Kaku, M., Iwasaki, A. 2011. Characteristics of ASTER GDEM version 2. In Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, 3657-3660. https://doi.org/10.1109/IGARSS.2011.6050017Valdés-Pineda, R., Valdés, J. B., Diaz, H. F., Pizarro-Tapia, R. 2016. Analysis of spatio-temporal changes in annual and seasonal precipitation variability in South America-Chile and related ocean-atmosphere circulation patterns. International Journal of Climatology, 36(8), 2979-3001. https://doi.org/10.1002/joc.4532Valdés-Pineda, R., Cañón, J., Valdés, J. B. 2017. Multi-decadal 40-to 60-year cycles of precipitation variability in Chile (South America) and their relationship to the AMO and PDO signals. Journal of Hydrology. (In Press). http://doi.org/10.1016/j.jhydrol.2017.01.03

    WEBSEIDF: A web-based system for the estimation of IDF curves in Central Chile

    Get PDF
    The lack of reliable continuous rainfall records can exacerbate the negative impact of extreme storm events. The inability to describe the continuous characteristics of rainfall from storm events increases the likelihood that the design of hydraulic structures will be inadequate. To mitigate extreme storm impacts and improve water governance at the catchment scale, it is vital to improve the availability of data and the array of tools used to model and forecast hydrological processes. In this paper, we describe and discuss the implementation of a web-based system for the estimation of intensity–duration–frequency (IDF) curves (WEBSEIDF) in Chile. The web platform was constructed using records from 47 pluviographic gauges available in central Chile (30–40° S), with at least 15 years of reliable records. IDF curves can be generated for durations ranging from 15 min to 24 h. In addition, the extrapolation of rainfall intensity from pluviograph to pluviometric gauges (i.e., 24-h rainfall accumulation) can be carried out using the storm index (SI) method. IDF curves can also be generated for any spatial location within central Chile using the ordinary Kriging method. These procedures allow the generation of numerical and graphical displays of IDF curves, for any selected spatial location, and for any combination of probability distribution function (PDF), parameter estimation method, and type of IDF model. One of the major advantages of WEBSEIDF is the flexibility of its database, which can be easily modified and saved to generate IDF curves under user-defined scenarios, that is, changing climate conditions. The implementation and validation of WEBSEIDF serves as a decision support system, providing an important tool for improving the ability of the Chilean government to mitigate the impact of extreme hydrologic events in central Chile. The system is freely available for students, researchers, and other relevant professionals, to improve technical decisions of public and private institutions

    Spatial and temporal analysis of rainfall concentration using the Gini index and PCI

    Get PDF
    This study aims to determine if there is variation in precipitation concentrations in Chile. We analyzed daily and monthly records from 89 pluviometric stations in the period 1970–2016 and distributed between 29°12′ S and 39°30′ S. This area was divided into two climatic zones: arid–semiarid and humid–subhumid. For each station, the Gini coefficient or Gini Index (GI), the precipitation concentration index (PCI), and the maximum annual precipitation intensity in a 24-h duration were calculated. These series of annual values were analyzed with the Mann–Kendall test with 5% error. Overall, it was noted that positive trends in the GI are present in both areas, although most were not found to be significant. In the case of PCI, the presence of positive trends is only present in the arid–semiarid zone; in the humid–subhumid zone, negative trends were mostly observed, although none of them were significant. Although no significant changes in all indices are evident, the particular case of the GI in the humid–subhumid zone stands out, where mostly positive trends were found (91.1%), of which 35.6% were significant. This would indicate that precipitation is more likely to be concentrated on a daily scale

    Desarrollan análisis regional sobre la gestión actual de los sedimentos en nueve países de América

    Get PDF
    Esta nota describe los principales resultados del libro "Perspectivas de la gestión de sedimentos en nueve países de las américas", publicado recientemente por UNESCO.Esta nota describe los principales resultados del libro "Perspectivas de la gestión de sedimentos en nueve países de las américas", publicado recientemente por UNESCO

    Legislative framework for sediment management in the United States

    Get PDF
    La erosión de sedimentos es un problema serio, con aproximadamente 75 000 millones de toneladas de suelo erosionadas anualmente en todo el mundo (Pimentel y Kounang, 1998). Aunque la erosión es un proceso natural, ésta puede acelerarse debido a la actividad humana y a los cambios en el uso de la tierra. El incremento de la erosión del suelo más allá de su umbral natural puede resultar en una degradación ambiental significativa y una disminución de la productividad económica. La implementación de leyes y prácticas de gestión de sedimentos es fundamental para disminuir significativamente la erosión del suelo y preservar los recursos ambientales. En los Estados Unidos, existe un sistema integral de leyes y regulaciones a nivel nacional, estatal, del condado y de ciudad que gobiernan la erosión y el control de sedimentos. Las leyes y los incentivos voluntarios descritos en nuestro trabajo han reducido significativamente los impactos negativos de los sedimentos transportados en las escorrentías urbanas y rurales, han reducido los contaminantes químicos y biológicos en los sedimentos transportados hacia los ecosistemas acuáticos y han mejorado la calidad del aire en varias ciudades con problemas de contaminación atmosférica. Tener un enfoque multifacético para monitorizar la erosión y mejorar la gestión del suelo es importante para un ambiente y una economía sanos y productivos.Sediment erosion is a serious issue, with approximately 75 billion tons of soil is eroded annually around the world (Pimentel and Kounang, 1998). Although erosion is a natural process, it can accelerate due to human activity and land use changes. Increasing soil erosion beyond its natural threshold can result in significant environmental degradation and decreased economic productivity. Implementing sediment management laws and practices is critical to significantly decrease soil erosion and preserve environmental resources. In the United States, there is a comprehensive system of laws and regulations at national, state, county, and city level that govern erosion and sediment control. The laws and voluntary incentives outlined in our paper have significantly reduced the negative impacts of sediment carried in urban and storm-generated runoff, have reduced chemical and biological pollutants in sediment transported in aquatic ecosystems, and have improved the air quality in several cities with air pollution problems. Having a multi-faceted approach to monitoring erosion and improving soil management is important for a healthy, productive environment and economy

    Legislative framework for sediment management in the United States

    Get PDF
    [EN] Sediment erosion is a serious issue, with approximately 75 billion tons of soil is eroded annually around the world (Pimentel and Kounang, 1998). Although erosion is a natural process, it can accelerate due to human activity and land use changes. Increasing soil erosion beyond its natural threshold can result in significant environmental degradation and decreased economic productivity. Implementing sediment management laws and practices is critical to significantly decrease soil erosion and preserve environmental resources. In the United States, there is a comprehensive system of laws and regulations at national, state, county, and city level that govern erosion and sediment control. The laws and voluntary incentives outlined in our paper have significantly reduced the negative impacts of sediment carried in urban and storm-generated runoff, have reduced chemical and biological pollutants in sediment transported in aquatic ecosystems, and have improved the air quality in several cities with air pollution problems. Having a multi-faceted approach to monitoring erosion and improving soil management is important for a healthy, productive environment and economy.[ES] La erosión de sedimentos es un problema serio, con aproximadamente 75.000 millones de toneladas de suelo erosionadas anualmente en todo el mundo (Pimentel y Kounang, 1998). Aunque la erosión es un proceso natural, ésta puede acelerarse debido a la actividad humana y a los cambios en el uso de la tierra. El incremento de la erosión del suelo más allá de su umbral natural puede resultar en una degradación ambiental significativa y una disminución de la productividad económica. La implementación de leyes y prácticas de gestión de sedimentos es fundamental para disminuir significativamente la erosión del suelo y preservar los recursos ambientales. En los Estados Unidos, existe un sistema integral de leyes y regulaciones a nivel nacional, estatal, del condado y de ciudad que gobiernan la erosión y el control de sedimentos. Las leyes y los incentivos voluntarios descritos en nuestro trabajo han reducido significativamente los impactos negativos de los sedimentos transportados en las escorrentías urbanas y rurales, han reducido los contaminantes químicos y biológicos en los sedimentos transportados hacia los ecosistemas acuáticos y han mejorado la calidad del aire en varias ciudades con problemas de contaminación atmosférica. Tener un enfoque multifacético para monitorizar la erosión y mejorar la gestión del suelo es importante para un ambiente y una economía sanos y productivos.Los autores agradecen la colaboración de las agencias federales y estatales norteamericanas que colaboraron en la elaboración de este artículo.Garcia-Chevesich, PA.; Jones, SL.; Daniels, JM.; Valdés-Pineda, R.; Venegas-Quiñones, H.; Pizarro, R. (2018). Marco legislativo para la gestión de sedimentos en los Estados Unidos. Ingeniería del Agua. 22(2):53-67. doi:10.4995/ia.2018.7916SWORD5367222Arizona Department of Environmental Quality. 2017. Air Quality Forecast. Recuperado de http://www.azdeq.gov/programs/airquality-programs/air-forecasting. Fecha de acceso 8 Mayo, 2017.California Environmental Protection Agency. 2017. Air Quality Resources Board. Recuperado de https://www.arb.ca.gov/. Fecha de acceso 8 Mayo, 2017.City of Lone Tree. 2015. Grading, erosion and control fact sheet. Public Works Department.Elliot, W.J., Miller, M.E., Enstice, N. 2016. Targeting forest management through fire and erosion modelling. International Journal of Wildland Fire, 25, 876-887. https://doi.org/10.1071/WF15007Farm Policy Facts. 2017. A Short History and Summary of the Farm Bill. Recuperado de https://www.farmpolicyfacts.org/farmpolicy-history/. Fecha de acceso 23 Marzo, 2017.Fryirs, K. 2013. (Dis)connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, 38, 30-46. https://doi.org/10.1002/esp.3242Garcia-Chevesich, P. 2015. Control de la erosión y recuperación de suelos degradados. Outskirts Press. Denver, CO. 486 p.Garcia-Chevesich, P., Alvarado, S., Neary, D., Valdes, R., Valdes, J., Aguirre, J., Mena, M., Pizarro, R., Jofré, P., Vera, M., Olivares, C. 2014. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments. Journal of Environmental Pollution, 187(April), 202-205. https://doi.org/10.1016/j.envpol.2013.12.028Garcia-Chevesich, P., Etra, J. 2012. Using vegetation to stabilize slopes. Environmental Connection, 6(1), 28-29.García-Ruiz, J.M., Beguería, S., Nadal-Romero, E., Gonzáles-Hidalgo, J.C., Lana-Renault, N., Sanjuán, Y. 2015. A meta-analysis of soil erosion rates across the world. Geomorphology, 239, 160-173. https://doi.org/10.1016/j.geomorph.2015.03.008Illinois Natural Resource Conservation Service. Electronic Field Office Technical Guide. (eFOTG). USDA-NRCS. Recuperado de http://www.nrcs.usda.gov/technical/efotg/.Minnesota Pollution Control Agency. 2013. Spicer State Highway 23 - stormwater management for linear projects. Recuperado de https://stormwater.pca.state.mn.us/index.php?title=Spicer_State_Highway_23_-_stormwater_management_for_linear_projects. Fecha de acceso 30 Abril, 2017.Mitas, L., Mitasova, H. 1998. Distributed soil erosion simulation for effective erosion prevention. Water Resource Research, 34(3), 505-516. https://doi.org/10.1029/97WR03347New York State Department of Environmental Conservation. 2017. Air. Recuperado de http://www.dec.ny.gov/chemical/281.html. Fecha de acceso 8 Mayo, 2017.Renwick, W.H., Smith, S.V., Bartley, J.D., Buddemeier, R.W. 2005. The role of impoundments in the sediment budget of the conterminous United States. Geomorphology, 71, 99-111. https://doi.org/10.1016/j.geomorph.2004.01.010U.S. Army Corps of Engineers. 2013. Grass GIS turns 30 - ERDC's CERL was there at the start. Recuperado de http://www.erdc.usace.army.mil/Media/News-Stories/Article/476565/grass-gis-turns-30-erdcs-cerl-was-there-at-the-start/. Fecha de acceso 30 Abril, 2017.U.S. Army Corps of Engineers. 2017. "Introduction." A brief history. Recuperado de http://www.usace.army.mil/About/History/Brief-History-of-the-Corps/Introduction/. Fecha de acceso 30 Abril, 2017.U.S. Department of Agriculture. 2007. Construction site soil erosion and sediment control fact sheet. Natural Resource Conservation Service. October, Illinois.U.S. Department of Agriculture. 2007. Soil Quality. Forest Service. Recuperado de https://www.nrs.fs.fed.us/fia/topics/soils//. Fecha de acceso 23 Abril, 2017.U.S. Department of Agriculture. 2008. Urban Soil Erosion and Sediment Control. Conservation practices for protecting and enhancing soil water resources in growing and changing communities. Association of Illinois Soil and Water Conservation Districts. Natural Resource Conservation Service. p1-16.U.S. Department of Agriculture. 2010. 2007 National Resource Inventory: Soil Erosion on Cropland. Natural Resource Conservation Service. Inventory and Assessment Division, Washington DC. 1-27.U.S. Department of Agriculture. 2017a. Research. Natural Resource Conservation Service. October, Illinois. Recuperado de https://www.ars.usda.gov/midwest-area/west-lafayette-in/national-soil-erosion-research/docs/wepp/research/. Fecha de acceso 21 Abril, 2017.U.S. Department of Agriculture. 2017b. Natural Resource Conservation Service. Recuperado de https://www.nrcs.usda.gov/wps/portal/nrcs/site/national/home/. Fecha de acceso 21 Marzo, 2017.U.S. Department of Agriculture. 2017c. Incentive Programs and Assistance for Producers. Natural Resource Conservation Service. Recuperado de https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/climatechange/resources/?cid=stelprdb1043608. Fecha de acceso 23 Marzo, 2017.U.S. Department of Agriculture. 2017d. National Water Quality Initiative. Natural Resource Conservation Service. Recuperado de https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/?cid=stelprdb1047761. Fecha de acceso 30 Abril, 2017.U.S. Department of Agriculture. 2017e. eDirective. Electronic Directives. Natural Resource Conservation Service. Recuperado de https://directives.sc.egov.usda.gov/Default.aspx. Fecha de acceso 23 Abril, 2017.U.S. Department of the Interior. 2004. Soil Resources Management. National Park Service. Recuperado de https://www.nature.nps.gov/rm77/soils/programguide.cfm. Fecha de acceso 23 Marzo, 2017.U.S. Environmental Protection Agency. 1998. The quality of our nation's waters, a summary of the National Water Quality Inventory: 1998 Report to Congress. EPA841-F-96-004G.U.S. Environmental Protection Agency. 2009. Developing your stormwater pollution prevention plan. A guide for industrial operators. EPA 833-B-09-002. 1-42.U.S. Environmental Protection Agency. 2014. Water quality standards handbook. Office of Water. 820-B-14-008.U.S. Environmental Protection Agency. 2017a. History of the Clean Water Act. Recuperado de https://www.epa.gov/laws-regulations/history-clean-water-act. Fecha de acceso 21 Marzo, 2017.U.S. Environmental Protection Agency. 2017b. National Pollutant Discharge Elimination System. Recuperado de https://www.epa.gov/npdes. Fecha de acceso 21 Marzo, 2017.U.S. Environmental Protection Agency. 2017c. PM-10 (1987) Nonattainment Area State/Area/County Report. Recuperado dehttps://www3.epa.gov/airquality/greenbook/pncs.html#AZ. Fecha de acceso 30 Abril, 2017.U.S. Environmental Protection Agency. 2018. Watershed Assessment, Tracking & Environmental Results System. Recuperado de https://www.epa.gov/waterdata/waters-watershed-assessment-tracking-environmental-results-system.U.S. Fish and Wildlife Service. 2015. Section 404 Permits. Charleston Ecological Services. Recuperado de https://www.fws.gov/charleston/404Permits.html. Fecha de acceso 23 Abril, 2017.U.S. Geological Survey. 2017a. Sediment Data Portal Guide. Recuperado de https://cida.usgs.gov/sediment/helpGuide.jsp. Fecha de acceso 23 Marzo, 2017.U.S. Geological Survey. 2017b. Sediment and Suspended Sediment. The effects of urbanization on water quality: Erosion and sedimentation. The USGS Water Science School. Recuperado de https://water.usgs.gov/edu/sediment.html. Fecha de acceso 23 Marzo, 2017.U.S. Geological Survey. 2017c. USGS Sediment Data Portal. Recuperado de https://cida.usgs.gov/sediment/. Fecha de acceso 7 Mayo 2017.U.S. Green Building Council. 2017. Erosion and sediment control. LEED O+M: Existing Buildings. LEED 2.0. Recuperado de http://www.usgbc.org/credits/existing-buildings/v20/ssp1. Fecha de acceso 30 Abril, 2017.Utah Department of Environmental Quality. 2017. Utah Division of Air Quality. Recuperado de https://deq.utah.gov/Divisions/daq/index.htm?id=l4. Fecha de acceso 8 May 2017.Voigt, C., Bozorth, T., Carey, B., Janes, E., Leonard, S. 1997. Sediment related issues and the public lands - Expanding sediment research capabilities in today's USGS - A bureau of land management overview. Proceedings of the U.S. Geological Survey (USGS) Sediment Workshop, February 4-7, 1997.Wolman, M.G. 1967. A cycle of sedimentation and erosion in urban river channels. Geografiska Annaler, 49A, 385-395. https://doi.org/10.1080/04353676.1967.11879766Wood, M.S., Teasdale, G.N. 2013, Use of surrogate technologies to estimate suspended sediment in the Clearwater River, Idaho, and Snake River, Washington, 2008-10: U.S. Geological Survey Scientific Investigations Report 2013-5052, 30 p

    Forest hydrology in Chile: Past, present, and future

    Get PDF
    This paper reviews the current knowledge of hydrological processes in Chilean temperate forests which extend along western South America from latitude 29° S to 56 ° S. This geographic region includes a diverse range of natural and planted forests and a broad sweep of vegetation, edaphic, topographic, geologic, and climatic settings which create a unique natural laboratory. Many local communities, endangered freshwater ecosystems, and downstream economic activities in Chile rely on water flows from forested catchments. This review aims to (i) provide a comprehensive overview of Chilean forest hydrology, to (ii) review prior research in forest hydrology in Chile, and to (iii) identify knowledge gaps and provide a vision for future research on forest hydrology in Chile. We reviewed the relation between native forests, commercial plantations, and other land uses on water yield and water quality from the plot to the catchment scale. Much of the global understanding of forests and their relationship with the water cycle is in line with the findings of the studies reviewed here. Streamflow from forested catchments increases after timber harvesting, native forests appear to use less water than plantations, and streams draining native forest yield less sediment than streams draining plantations or grassland/shrublands. We identified 20 key knowledge gaps such as forest groundwater systems, soil–plant-atmosphere interactions, native forest hydrology, and the effect of forest management and restoration on hydrology. Also, we found a paucity of research in the northern geographic areas and forest types (35-36 ° S); most forest hydrology studies in Chile (56 %) have been conducted in the southern area (Los Rios Region around 39-40 ° S). There is limited knowledge of the geology and soils in many forested areas and how surface and groundwater are affected by changes in land cover. There is an opportunity to advance our understanding using process-based investigations linking field studies and modeling. Through the establishment of a forest hydrology science “society” to coordinate efforts, regional and national-scale land use planning might be supported. Our review ends with a vision to advance a cross-scale collaborative effort to use new nation-wide catchment-scale networks Long-term Ecosystem Research (LTER) sites, to promote common and complementary techniques in these studies, and to conduct transdisciplinary research to advance sound and integrated planning of forest lands in Chile

    A sub-hourly precipitation dataset from a pluviographic network in central Chile

    Get PDF
    This data descriptor presents a unique high-resolution rainfall dataset derived from 14 pluviograph stations across central Chile’s Mediterranean region, covering variable periods starting from between 1969 and 1992, up to 2009. The dataset provides continuous precipitation records at a 5 min temporal resolution, obtained through the digitization and processing of pluviograph strip charts using specialized software. This high temporal resolution is unprecedented for the region and enables detailed analysis of rainfall intensity, duration, and frequency patterns critical for hydrological research, climate studies, and water resource management in general. Each station’s data was subjected to quality control procedures, including manual validation and correction of digitization errors to ensure data integrity. The dataset reveals the significant temporal variability of rainfall in central Chile, capturing both short-duration high-intensity events and longer precipitation patterns. By making this dataset publicly available, we provide researchers with a valuable resource for studying rainfall behavior in a Mediterranean climate zone subject to significant climate variability and change. The dataset supports various applications, including the development of intensity–duration–frequency curves, analysis of rainfall erosivity, calibration of hydrological models, and investigation of precipitation trends in the context of climate change.The authors gratefully acknowledge the support provided by the ANID BASAL Center FB210015 (CENAMAD) and by ANID FONDECYT Regular grant 1251441.Dat
    corecore