2,056 research outputs found

    What has finite element analysis taught us about diabetic foot disease and its management?:a systematic review

    Get PDF
    Over the past two decades finite element (FE) analysis has become a popular tool for researchers seeking to simulate the biomechanics of the healthy and diabetic foot. The primary aims of these simulations have been to improve our understanding of the foot's complicated mechanical loading in health and disease and to inform interventions designed to prevent plantar ulceration, a major complication of diabetes. This article provides a systematic review and summary of the findings from FE analysis-based computational simulations of the diabetic foot.A systematic literature search was carried out and 31 relevant articles were identified covering three primary themes: methodological aspects relevant to modelling the diabetic foot; investigations of the pathomechanics of the diabetic foot; and simulation-based design of interventions to reduce ulceration risk.Methodological studies illustrated appropriate use of FE analysis for simulation of foot mechanics, incorporating nonlinear tissue mechanics, contact and rigid body movements. FE studies of pathomechanics have provided estimates of internal soft tissue stresses, and suggest that such stresses may often be considerably larger than those measured at the plantar surface and are proportionally greater in the diabetic foot compared to controls. FE analysis allowed evaluation of insole performance and development of new insole designs, footwear and corrective surgery to effectively provide intervention strategies. The technique also presents the opportunity to simulate the effect of changes associated with the diabetic foot on non-mechanical factors such as blood supply to local tissues.While significant advancement in diabetic foot research has been made possible by the use of FE analysis, translational utility of this powerful tool for routine clinical care at the patient level requires adoption of cost-effective (both in terms of labour and computation) and reliable approaches with clear clinical validity for decision making

    Lepton Jets in (Supersymmetric) Electroweak Processes

    Get PDF
    We consider some of the recent proposals in which weak-scale dark matter is accompanied by a GeV scale dark sector that could produce spectacular lepton-rich events at the LHC. Since much of the collider phenomenology is only weakly model dependent it is possible to arrive at generic predictions for the discovery potential of future experimental searches. We concentrate on the production of dark states through Z0Z^0 bosons and electroweak-inos at the Tevatron or LHC, which are the cleanest channels for probing the dark sector. We properly take into account the effects of dark radiation and dark cascades on the formation of lepton jets. Finally, we present a concrete definition of a lepton jet and suggest several approaches for inclusive experimental searches.Comment: 23 pages, 13 figures, published version, added section 3.3 expanding on lepton jet's morpholog

    Patient-reported outcomes measures and patient preferences for minimally invasive glaucoma surgical devices.

    Get PDF
    BackgroundMany therapeutic options are available to glaucoma patients. One recent therapeutic option is minimally invasive glaucoma surgical (MIGS) devices. It is unclear how patients view different treatments and which patient-reported outcomes would be most relevant in patients with mild to moderate glaucoma. We developed a questionnaire for patients eligible for MIGS devices and a patient preference study to examine the value patients place on certain outcomes associated with glaucoma and its therapies.ObjectivesTo summarize the progress to date.MethodsQuestionnaire development: We drafted the questionnaire items based on input from one physician and four patient focus groups, and a review of the literature. We tested item clarity with six cognitive interviews. These items were further refined. Patient preference study: We identified important benefit and risk outcomes qualitatively using semi-structured, one-on-one interviews with patients who were eligible for MIGS devices. We then prioritized these outcomes quantitatively using best-worst scaling methods.ResultsQuestionnaire testing: Three concepts were deemed relevant for the questionnaire: functional limitations, symptoms, and psychosocial factors. We will evaluate the reliability and validity of the 52-item draft questionnaire in an upcoming field test. Patient preference study: We identified 13 outcomes that participants perceived as important. Outcomes with the largest relative importance weights were "adequate IOP control" and "drive a car during the day."ConclusionsPatients have the potential to steer clinical research towards outcomes that are important to them. Incorporating patients' perspectives into the MIGS device development and evaluation process may expedite innovation and availability of these devices

    Fiber metallic glass laminates

    Get PDF
    Author name used in this publication: J. LuVersion of RecordPublishe

    Superpartner spectrum of minimal gaugino-gauge mediation

    Full text link
    We evaluate the sparticle mass spectrum in the minimal four-dimensional construction that interpolates between gaugino and ordinary gauge mediation at the weak scale. We find that even in the hybrid case -- when the messenger scale is comparable to the mass of the additional gauge particles -- both the right-handed as well as the left-handed sleptons are lighter than the bino in the low-scale mediation regime. This implies a chain of lepton production and, consequently, striking signatures that may be probed at the LHC already in the near future.Comment: 8 pages, 3 figures; V2: refs and a few comments added; V3 title change

    Discovery Potential for Low-Scale Gauge Mediation at Early LHC

    Full text link
    Low-scale gauge-mediated supersymmetry(SUSY)-breaking (GMSB) models with gravitino mass m_{3/2}<16 eV are attractive, since there are no flavor and cosmological problems. In this paper, we thoroughly study the collider signal in the case that the next-to-lightest SUSY particle is the bino or slepton and investigate the discovery potential of the LHC. Our result is applicable to a wider class of GMSB models other than the minimal GMSB models and we pay particular attention to realistic experimental setups. We also apply our analysis to the minimal GMSB models with a metastable SUSY-breaking vacuum and we show, by requiring sufficient stability of the SUSY-breaking vacuum, these models can be tested at an early stage of the LHC.Comment: 21 pages, 7 figures.Texts in section 3.2.2 and 3.2.4 are revised. Captions change

    Generation of subject-specific, dynamic, multisegment ankle and foot models to improve orthotic design: a feasibility study

    Get PDF
    ABSTRACT: BACKGROUND: Currently, custom foot and ankle orthosis prescription and design tend to be based on traditional techniques, which can result in devices which vary greatly between clinicians and repeat prescription. The use of computational models of the foot may give further insight in the biomechanical effects of these devices and allow a more standardised approach to be taken to their design, however due to the complexity of the foot the models must be highly detailed and dynamic. METHODS: Functional and anatomical datasets will be collected in a multicentre study from 10 healthy participants and 15 patients requiring orthotic devices. The patient group will include individuals with metarsalgia, flexible flat foot and drop foot. Each participant will undergo a clinical foot function assessment, 3D surface scans of the foot under different loading conditions, and detailed gait analysis including kinematic, kinetic, muscle activity and plantar pressure measurements in both barefoot and shod conditions. Following this each participant will undergo computed tomography (CT) imaging of their foot and ankle under a range of loads and positions while plantar pressures are recorded. A further subgroup of participants will undergo magnetic resonance imaging (MRI) of the foot and ankle. Imaging data will be segmented to derive the size of bones and orientation of the joint axes. Insertion points of muscles and ligaments will be determined from the MRI and CT-scans and soft tissue material properties computed from the loaded CT data in combination with the plantar pressure measurements. Gait analysis data will be used to drive the models and in combination with the 3D surface scans for scaling purposes. Predicted plantar pressures and muscle activation patterns predicted from the models will be compared to determine the validity of the models. DISCUSSION: This protocol will lead to the generation of unique datasets which will be used to develop linked inverse dynamic and forward dynamic biomechanical foot models. These models may be beneficial in predicting the effect of and thus improving the efficacy of orthotic devices for the foot and ankle

    KDIGO Controversies Conference on onco-nephrology: understanding kidney impairment and solid-organ malignancies, and managing kidney cancer

    Get PDF
    The association between kidney disease and cancer is multifaceted and complex. Persons with chronic kidney disease (CKD) have an increased incidence of cancer, and both cancer and cancer treatments can cause impaired kidney function. Renal issues in the setting of malignancy can worsen patient outcomes and diminish the adequacy of anticancer treatments. In addition, the oncology treatment landscape is changing rapidly, and data on tolerability of novel therapies in patients with CKD are often lacking. Caring for oncology patients has become more specialized and interdisciplinary, currently requiring collaboration among specialists in nephrology, medical oncology, critical care, clinical pharmacology/pharmacy, and palliative care, in addition to surgeons and urologists. To identify key management issues in nephrology relevant to patients with malignancy, KDIGO (Kidney Disease: Improving Global Outcomes) assembled a global panel of multidisciplinary clinical and scientific expertise for a controversies conference on onco-nephrology in December 2018. This report covers issues related to kidney impairment and solid organ malignancies as well as management and treatment of kidney cancer. Knowledge gaps, areas of controversy, and research priorities are described

    Rare B Decays with a HyperCP Particle of Spin One

    Full text link
    In light of recent experimental information from the CLEO, BaBar, KTeV, and Belle collaborations, we investigate some consequences of the possibility that a light spin-one particle is responsible for the three Sigma^+ -> p mu^+ mu^- events observed by the HyperCP experiment. In particular, allowing the new particle to have both vector and axial-vector couplings to ordinary fermions, we systematically study its contributions to various processes involving b-flavored mesons, including B-Bbar mixing as well as leptonic, inclusive, and exclusive B decays. Using the latest experimental data, we extract bounds on its couplings and subsequently estimate upper limits for the branching ratios of a number of B decays with the new particle. This can serve to guide experimental searches for the particle in order to help confirm or refute its existence.Comment: 17 pages, 3 figures; discussion on spin-0 case modified, few errors corrected, main conclusions unchange
    corecore