161 research outputs found

    Book Reviews

    Get PDF

    Prey of reintroduced fishers and their habitat relationships in the Cascades T Range, Washington

    Get PDF
    Conservation and recovery of forest carnivores requires an understanding of their habitat requirements, as well as requirements of their prey. In much of the western United States, trapping and habitat loss led to extirpations of fishers (Pekania pennanti) by the mid-20th century, and reintroductions are ongoing to restore fishers to portions of their former range. Fisher recovery in Washington State has been limited by isolation from other populations, but other potentially important factors, such as diet of fishers in this region and prey availability, have not been thoroughly investigated. We collected hair samples from potential prey and fishers for stable isotope analysis to identify important prey items for fishers within a reintroduction area in southern Washington. We then estimated the abundance of prey species at 21 sites across a gradient of forest structural classes within the fisher reintroduction area, and assessed the effects of forest age and vegetation on the prey community using permutational multivariate analysis of variance and non-metric multidimensional scaling. Stable isotopes revealed that larger prey items, including snowshoe hares (Lepus americanus) and/or mountain beavers (Aplodontia rufa), were the most important prey item(s) for fishers in the southern Cascades. We found distinct but equally diverse prey communities in old-growth (unmanaged) and young (heavily managed) forest stands, with snowshoe hares and mountain beavers most common in young forests, while chipmunks (Neotamius spp.) and small mammals were more common in older forests. Our results suggest a discrepancy between the habitats where important fisher prey are most abundant and habitat requirements of fishers. Snowshoe hares and mountain beavers were most abundant in young forests, whereas fishers are associated with landscapes dominated by older forest stands or those that provide large woody structures, which fishers use for denning and resting. Our results add to growing evidence that forest landscape mosaics provide valuable habitat for fishers in the Pacific Northwest, suggesting that both mature and younger forest stands are important for fishers and fisher recovery

    Spin-resonance modes of the spin-gap magnet TlCuCl_3

    Full text link
    Three kinds of magnetic resonance signals were detected in crystals of the spin-gap magnet TlCuCl_3. First, we have observed the microwave absorption due to the excitation of the transitions between the singlet ground state and the excited triplet states. This mode has the linear frequency-field dependence corresponding to the previously known value of the zero-field spin-gap of 156 GHz and to the closing of spin-gap at the magnetic field H_c of about 50 kOe. Second, the thermally activated resonance absorption due to the transitions between the spin sublevels of the triplet excitations was found. These sublevels are split by the crystal field and external magnetic field. Finally, we have observed antiferromagnetic resonance absorption in the field-induced antiferromagnetic phase above the critical field H_c. This resonance frequency is strongly anisotropic with respect to the direction of the magnetic field.Comment: v.2: typo correction (one of the field directions was misprinted in the v.1

    Hamiltonian submanifolds of regular polytopes

    Full text link
    We investigate polyhedral 2k2k-manifolds as subcomplexes of the boundary complex of a regular polytope. We call such a subcomplex {\it kk-Hamiltonian} if it contains the full kk-skeleton of the polytope. Since the case of the cube is well known and since the case of a simplex was also previously studied (these are so-called {\it super-neighborly triangulations}) we focus on the case of the cross polytope and the sporadic regular 4-polytopes. By our results the existence of 1-Hamiltonian surfaces is now decided for all regular polytopes. Furthermore we investigate 2-Hamiltonian 4-manifolds in the dd-dimensional cross polytope. These are the "regular cases" satisfying equality in Sparla's inequality. In particular, we present a new example with 16 vertices which is highly symmetric with an automorphism group of order 128. Topologically it is homeomorphic to a connected sum of 7 copies of S2×S2S^2 \times S^2. By this example all regular cases of nn vertices with n<20n < 20 or, equivalently, all cases of regular dd-polytopes with d9d\leq 9 are now decided.Comment: 26 pages, 4 figure

    Electrostatic properties of inner nanopore surfaces of anodic aluminum oxide membranes upon high temperature annealing revealed by EPR of pH-sensitive spin probes and labels

    Get PDF
    Anodic aluminum oxide (AAO) membranes are versatile nanomaterials that combine the chemically stable and mechanically robust properties of ceramics with homogeneous nanoscale organization that can be tuned to desirable pore diameters and lengths. The AAO substrates feature high surface area that is readily accessible to large and small molecules, making these nanostructures uniquely suited for many possible applications. Examples include templated self-assembly of macroscopically aligned biological membranes and substrates for heterogeneous catalysis. For further development of such applications, one would like to characterize and tune the electrostatic properties of the inner pore surface as well as the local acidity within the nanochannels. Here, we employed electron paramagnetic resonance (EPR) spectroscopy of a small molecule – ionizable nitroxide – as a reporter of the average local acidity in the nanochannels and the local electrostatic potential in the immediate vicinity of the pore surface. The former was achieved by measuring EPR spectra of this molecular probe diffusing in an aqueous phase confined in the AAO nanochannels while for the latter the nitroxide was covalently attached to the hydroxyl group of the alumina surface. We show that the local acidity within the nanochannels is increased by as much as ≈1.48 pH units vs. the pH of bulk solution by decreasing the pore diameter down to ca. 31 nm. Furthermore, the positive surface charge of the as-prepared AAO could be decreased and even switched to a negative surface charge upon annealing the membranes first to 700 °C and then to 1200 °C. For as-prepared AAO, the local electrostatic potential reaches ψ= (163 ± 5) mV for the nitroxide label covalently attached to AAO and located about 0.5 nm away from the surface. Overall, we demonstrate that the acid-based properties of the aqueous volume confined by the AAO nanopores pores can be tuned by either changing the pore diameter from ca. 71 to 31 nm or by thermal annealing to switch the sign of the surface charge. These observations provide a simple and robust means to tailor these versatile high-surface-area nanomaterials for specific applications that depend on acid-base equilibria. © 2020 Elsevier B.V.Russian Foundation for Basic Research. Government Council on Grants, Russian Federation. U.S. Department of Energy. Ministry of Science and Higher Education of the Russian Federation. National Science Foundation. North Carolina State Universit

    The Crystal Ball Data Acquisition System

    Get PDF
    The data acquisition system for the Crystal Ball project at SLAC is described. A PDP-11/t55 using RSX-11M connected to the SLAC Triplex is the basis of the system. A "physics pipeline" allows physicists to write their own equipment-monitoring or physics tasks which require event sampling. As well, an interactive analysis package (MULTI) is in the pipeline. Histogram collection and display on the PDP are implemented using the Triplex histogramming package. Various interactive event displays are also implemented

    Regional differences in mitochondrial DNA methylation in human post-mortem brain tissue

    Get PDF
    Background: DNA methylation is an important epigenetic mechanism involved in gene regulation, with alterations in DNA methylation in the nuclear genome being linked to numerous complex diseases. Mitochondrial DNA methylation is a phenomenon that is receiving ever-increasing interest, particularly in diseases characterized by mitochondrial dysfunction; however, most studies have been limited to the investigation of specific target regions. Analyses spanning the entire mitochondrial genome have been limited, potentially due to the amount of input DNA required. Further, mitochondrial genetic studies have been previously confounded by nuclear-mitochondrial pseudogenes. Methylated DNA Immunoprecipitation Sequencing is a technique widely used to profile DNA methylation across the nuclear genome; however, reads mapped to mitochondrial DNA are often discarded. Here, we have developed an approach to control for nuclear-mitochondrial pseudogenes within Methylated DNA Immunoprecipitation Sequencing data. We highlight the utility of this approach in identifying differences in mitochondrial DNA methylation across regions of the human brain and pre-mortem blood. Results: We were able to correlate mitochondrial DNA methylation patterns between the cortex, cerebellum and blood. We identified 74 nominally significant differentially methylated regions (p < 0.05) in the mitochondrial genome, between anatomically separate cortical regions and the cerebellum in matched samples (N = 3 matched donors). Further analysis identified eight significant differentially methylated regions between the total cortex and cerebellum after correcting for multiple testing. Using unsupervised hierarchical clustering analysis of the mitochondrial DNA methylome, we were able to identify tissue-specific patterns of mitochondrial DNA methylation between blood, cerebellum and cortex. Conclusions: Our study represents a comprehensive analysis of the mitochondrial methylome using pre-existing Methylated DNA Immunoprecipitation Sequencing data to identify brain region-specific patterns of mitochondrial DNA methylation

    Short-term effects of unilateral lesion of the primary motor cortex (M1) on ipsilesional hand dexterity in adult macaque monkeys

    Get PDF
    Although the arrangement of the corticospinal projection in primates is consistent with a more prominent role of the ipsilateral motor cortex on proximal muscles, rather than on distal muscles involved in manual dexterity, the role played by the primary motor cortex on the control of manual dexterity for the ipsilateral hand remains a matter a debate, either in the normal function or after a lesion. We, therefore, tested the impact of permanent unilateral motor cortex lesion on the manual dexterity of the ipsilateral hand in 11 macaque monkeys, within a time window of 60 days post-lesion. For comparison, unilateral reversible pharmacological inactivation of the motor cortex was produced in an additional monkey. Manual dexterity was assessed quantitatively based on three motor parameters derived from two reach and grasp manual tasks. In contrast to the expected dramatic, complete deficit of manual dexterity of the contralesional hand that persists for several weeks, the impact on the manual dexterity of the ipsilesional hand was generally moderate (but statistically significant) and, when present, lasted less than 20 days. Out of the 11 monkeys, only 3 showed a deficit of the ipsilesional hand for 2 of the 3 motor parameters, and 4 animals had a deficit for only one motor parameter. Four monkeys did not show any deficit. The reversible inactivation experiment yielded results consistent with the permanent lesion data. In conclusion, the primary motor cortex exerts a modest role on ipsilateral manual dexterity, most likely in the form of indirect hand postural control

    The methylation status of the embryonic limb skeletal progenitors determines their cell fate in chicken

    Get PDF
    Digits shape is sculpted by interdigital programmed cell death during limb development. Here, we show that DNA breakage in the periphery of 5-methylcytosine nuclei foci of interdigital precursors precedes cell death. These cells showed higher genome instability than the digit-forming precursors when exposed to X-ray irradiation or local bone morphogenetic protein (BMP) treatments. Regional but not global DNA methylation differences were found between both progenitors. DNA-Methyl-Transferases (DNMTs) including DNMT1, DNMT3B and, to a lesser extent, DNMT3A, exhibited well-defined expression patterns in regions destined to degenerate, as the interdigital tissue and the prospective joint regions. Dnmt3b functional experiments revealed an inverse regulation of cell death and cartilage differentiation, by transcriptional regulation of key genes including Sox9, Scleraxis, p21 and Bak1, via differential methylation of CpG islands across their promoters. Our findings point to a regulation of cell death versus chondrogenesis of limb skeletal precursors based on epigenetic mechanisms.We thank Prof. Miguel Lafarga for helpful comments and advice. We thank Dr Jose E Gomez-Arozamena for helping us with the irradiation experiments. We are grateful to Montse Fernandez Calderon, Susana Dawalibi, and Sonia Perez Mantecon, for excellent technical assistance. This work was supported by a Grant (BFU2017–84046-P) from the Spanish Science and Innovation Ministry to JAM. C.S.F is recipient of a FPI grant (BES-2015–074267)
    corecore