257 research outputs found

    Conversion at Corinth: an exploration of the understandings of conversion held by the Apostle Paul and the Corinthian Christians

    Get PDF
    Conversion has been a neglected topic in recent New Testament research. The thesis attempts to end this neglect through the pursuit of two inter-connected aims. They are: (i) to clarify crucial theoretical issues surrounding the study of conversion and converts, so making more accessible to New Testament scholars the insights offered by recent studies of conversion in several different disciplines. (ii) to explore the understanding of conversion held by Paul and the Corinthians, so contributing to our knowledge of each, and allowing the perspectives of an advocate of conversion and those who responded to his advocacy to be compared. The structure of the thesis flows from these aims. Part 1, Studying Conversion and Converts, examines theoretical issues. The nature of conversion is discussed. Is conversion a universal phenomenon or a particular one? Is it essentially an individual phenomenon or a social one? It is concluded that conversion is best approached through particular understandings of it, but that there are some common features across time and across the boundaries of religious traditions. One of the most important of these common features is that conversion involves both a personally acknowledged transformation of the self and a socially recognised display of change. Alongside the need to understand conversion stands the need to understand converts. Recent studies recognise that converts are active in their own transformation, especially in the accounts which they offer of their conversion experience. Taking issue with dominant recent trends, it is concluded that although such conversion accounts develop they do not necessarily distort. The work on conversion of New Testament scholars Gaventa and Segal is briefly reviewed in the light of the preceding theoretical discussions, and some broad questions with which to approach particular understandings of conversion are defined. These concern expectations as to how conversion takes place, and expectations as to its consequences. Anthony Gidden's structuration theory is selected as an appropriate theoretical resource with which to pursue these questions

    Ecological selectivity and the evolution of mammalian substrate preference across the K-Pg boundary.

    Get PDF
    The Cretaceous-Paleogene (K-Pg) mass extinction 66 million years ago was characterized by a worldwide ecological catastrophe and rapid species turnover. Large-scale devastation of forested environments resulting from the Chicxulub asteroid impact likely influenced the evolutionary trajectories of multiple clades in terrestrial environments, and it has been hypothesized to have biased survivorship in favour of nonarboreal lineages across the K-Pg boundary. Here, we evaluate patterns of substrate preferences across the K-Pg boundary among crown group mammals, a group that underwent rapid diversification following the mass extinction. Using Bayesian, likelihood, and parsimony reconstructions, we identify patterns of mammalian ecological selectivity that are broadly similar to those previously hypothesized for birds. Models based on extant taxa indicate predominant K-Pg survivorship among semi- or nonarboreal taxa, followed by numerous independent transitions to arboreality in the early Cenozoic. However, contrary to the predominant signal, some or all members of total-clade Euarchonta (Primates + Dermoptera + Scandentia) appear to have maintained arboreal habits across the K-Pg boundary, suggesting ecological flexibility during an interval of global habitat instability. We further observe a pronounced shift in character state transitions away from plesiomorphic arboreality associated with the K-Pg transition. Our findings are consistent with the hypothesis that predominantly nonarboreal taxa preferentially survived the end-Cretaceous mass extinction, and emphasize the pivotal influence of the K-Pg transition in shaping the early evolutionary trajectories of extant terrestrial vertebrates.NS

    Oldest Skeleton of a Plesiadapiform provides additional evidence for an exclusively arboreal radiation of stem Primates in the Palaeocene

    Full text link
    Palaechthonid plesiadapiforms from the Palaeocene of western North America have long been recognized as among the oldest and most primitive euarchontan mammals, a group that includes extant primates, colugos and treeshrews. Despite their relatively sparse fossil record, palaechthonids have played an important role in discussions surrounding adaptive scenarios for primate origins for nearly a half-century. Likewise, palaechthonids have been considered important for understanding relationships among plesiadapiforms, with members of the group proposed as plausible ancestors of Paromomyidae and Microsyopidae. Here, we describe a dentally associated partial skeleton of Torrejonia wilsoni from the early Palaeocene (approx. 62Ma) of New Mexico, which is the oldest known plesiadapiform skeleton and the first Palaechthonid plesiadapiforms from the Palaeocene of western North America have long been recognized as among the oldest and most primitive euarchontan mammals, a group that includes extant primates, colugos and treeshrews. Despite their relatively sparse fossil record, palaechthonids have played an important role in discussions surrounding adaptive scenarios for primate origins for nearly a half-century. Likewise, palaechthonids have been considered important for understanding relationships among plesiadapiforms, with members of the group proposed as plausible ancestors of Paromomyidae and Microsyopidae. Here, we describe a dentally associated partial skeleton of Torrejonia wilsoni from the early Palaeocene (approx. 62Ma) of New Mexico, which is the oldest known plesiadapiform skeleton and the firs

    Use of Remote Sensing for Monitoring Climate Variability for Integrated Early Warning Systems: Applications for Human Diseases and Desert Locust Management

    Get PDF
    A number of the major human infectious diseases (like malaria and dengue) and Desert Locusts that still plague the developing world are sensitive to inter-seasonal and inter-decadal changes in environment and climate. Monitoring variations in environmental conditions such as rainfall and vegetation helps decision-makers at Ministries of Agriculture and Ministries of Health to assess the risk levels of Desert Locust outbreaks or malaria epidemics. The International research institute for climate and society (IRI) has developed products based on remotely sensed data to monitor those changes and provide the information directly to the decision-makers. This paper presents recent developments which use remote sensing to monitor climate variability, environmental conditions and their impacts on the dynamics of infectious diseases (malaria) and Desert Locust outbreaks

    RUNX2 tandem repeats and the evolution of facial length in placental mammals

    Get PDF
    Background When simple sequence repeats are integrated into functional genes, they can potentially act as evolutionary ‘tuning knobs’, supplying abundant genetic variation with minimal risk of pleiotropic deleterious effects. The genetic basis of variation in facial shape and length represents a possible example of this phenomenon. Runt-related transcription factor 2 (RUNX2), which is involved in osteoblast differentiation, contains a functionally-important tandem repeat of glutamine and alanine amino acids. The ratio of glutamines to alanines (the QA ratio) in this protein seemingly influences the regulation of bone development. Notably, in domestic breeds of dog, and in carnivorans in general, the ratio of glutamines to alanines is strongly correlated with facial length. Results In this study we examine whether this correlation holds true across placental mammals, particularly those mammals for which facial length is highly variable and related to adaptive behavior and lifestyle (e.g., primates, afrotherians, xenarthrans). We obtained relative facial length measurements and RUNX2 sequences for 41 mammalian species representing 12 orders. Using both a phylogenetic generalized least squares model and a recently-developed Bayesian comparative method, we tested for a correlation between genetic and morphometric data while controlling for phylogeny, evolutionary rates, and divergence times. Non-carnivoran taxa generally had substantially lower glutamine-alanine ratios than carnivorans (primates and xenarthrans with means of 1.34 and 1.25, respectively, compared to a mean of 3.1 for carnivorans), and we found no correlation between RUNX2 sequence and face length across placental mammals. Conclusions Results of our diverse comparative phylogenetic analyses indicate that QA ratio does not consistently correlate with face length across the 41 mammalian taxa considered. Thus, although RUNX2 might function as a ‘tuning knob’ modifying face length in carnivorans, this relationship is not conserved across mammals in general
    corecore