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 ABSTRACT 
This review paper presents an assessment of the current state of knowledge and capability in 
seasonal climate prediction at the end of the 20th century. The discussion covers the full range of 
issues involved in climate forecasting, including (1) the theory and empirical evidence for 
predictability; (2) predictions of surface boundary conditions, such as sea surface temperatures 
(SSTs) that drive the predictable part of the climate; (3) predictions of the climate; and (4) a brief 
consideration of the application of climate forecasts. Within this context, the research of the 
coming decades that seeks to address shortcomings in each area is described. 
 
KEYWORDS: Seasonal climate variability, ENSO, statistical prediction, dynamical prediction, ensembles, 

probabilistic forecasts 
 



 

 1 

1. INTRODUCTION 
 

Research over the last century, and particularly in the last couple of decades, has shown that 
in many regions of the world the seasonal climate is potentially predictable. Useable predictions 
are possible under certain conditions: when the boundary conditions that force the atmosphere 
(e.g. sea-surface temperatures (SSTs) and land surface characteristics) are strongly perturbed, 
significant shifts are produced in the probabilities of different weather regimes that occur over a 
season (Palmer and Anderson, 1994). To the extent that the relevant boundary conditions and 
their associated climate impacts are predictable, skillful seasonal forecasts are possible. 

Climate prediction efforts have existed for many hundreds of years. Very early approaches 
sought to identify environmental indicators that could suggest likely shifts in next season's 
climate (Inwards, 1994). Certain plants or animals may be sensitive to evolving climate patterns, 
for example, and the appearance of flowering plant or the tendency of birds to build nests on a 
particular side of the tree may indicate that the next rainy season will be good or bad. Within 
some villages of Andean South America, predictions of summer rainfall and autumn harvests are 
based on changes in the visibility of stars in the Pleiades constellation. Recently such changes in 
visibility have been attributed to changes in cloud cover over the tropical Pacific as a result of 
developing El Niño conditions (Orlove, et al., 2000). Today, the physics behind such climate - 
environment relationships is better understood and the tools for predicting them are more 
sophisticated. Similarly, our recognition of which elements of the climate system greatly affect 
future seasonal climate has grown considerably through the 20th century as modeling and 
observational studies continue to add to our understanding. 

Progress in diagnosing, modeling and predicting seasonal climate variability represents a 
major scientific advancement of the 20th century; however, progress in the effective utilization of 
forecasts has lagged behind. Until recently, the burden rested on the user community to learn 
what prediction information was available and how it might be applied. While this is still largely 
the case, there are now increasing efforts to systematically engage the user communities in 
actively voicing their needs and participating in the development of forecast products and 
applications. For example, certain users might be interested more in the prediction of the 
duration of dry spells than the standard average 3-month rainfall anomaly. The prediction 
community is increasingly considering user requests when planning its research. At the other end 
of the prediction spectrum, the requirements for observations become better defined when users 
identify what prediction information they find most useful. This is an exciting time, as the view 
of climate variability across the disciplines become more coherent and researchers from 
seemingly disparate disciplines begin to understand each other better. 

The primary objective of this paper is to offer a comprehensive view of seasonal to 
interannual climate prediction - what methods are currently used, what information they provide, 
how they are typically judged, and their generally recognized advantages and disadvantages. No 
one approach is endorsed. In fact, benefits are likely gained from considering a variety of 
approaches. In practice the method chosen will vary according to the type and use of information 
desired from the prediction and also according to the resources available to produce the 
prediction. Much, but not all, attention is given to ENSO because it has such a large global 
impact and because so much of our forecasting efforts and skill derive from it. Given the rapid 
evolution during the recent few years in the understanding and techniques behind climate 
forecasting it seems appropriate to stand back and assess what we know and what we need to 
know at this time, as society prepares to put this information to use. 
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2.   THEORY OF PREDICTABILITY OF SEASONAL-TO-INTERANNUAL CLIMATE 

 
2.1. Sources of predictability 
 

Boundary conditions v. initial conditions. In the atmosphere, memory is short. An 
instantaneous realization of the weather will exert influence on future realizations only 5 to 10 
days into the future. It has been long recognized that accurate observations of the initial 
atmospheric state are crucial for short and medium-range weather forecasts (Thompson, 1957; 
Lorenz, 1963, 1984, 1990; Shukla, 1981; Reinhold, 1987; Somerville, 1987; Murphy, 1988; Palmer 
et al., 1990; Mureau et al., 1993; Palmer and Anderson, 1994). For seasonal timescales, although 
atmospheric initial conditions do have a detectable influence, their importance is considerably 
weakened (Brankovic et al., 1990; Barnett, 1995). The relatively longer time scales of variability 
in the surface boundary layer allows for predictability of climate that potentially extends for 
many seasons – far beyond the predictability limit for the atmosphere alone (Charney and 
Shukla, 1981). Even simple thermal inertia of the upper ocean and persistence of land surface 
characteristics provide a degree of predictability out to a few months (Frankignoul, 1985). When 
other elements of the climate system such as the upper ocean or the land surface are dynamically 
coupled to the atmosphere and are allowed to evolve, even longer timescales of predictability are 
attainable (Rosati et al., 1997; Zeng and Neelin, 1999). However, because these elements have 
differing intrinsic time scales, the issue of initialization in each of the air-sea-land components 
becomes far more complex (Larow and Krishnamurti, 1998; Pielke, 1998). At this time, most 
dynamical climate prediction involves only the atmosphere (as is discussed in Section 3.2), and it 
is assumed that atmospheric initial conditions are secondary to predictions of land and sea 
surface conditions. 

 
Sea surface v. land surface boundary conditions. The decorrelation time scale of sea surface 

temperature (SST) variability is about one year over much of the tropical Pacific ocean, where El 
Niño and La Niña events dominate the variability. These events are extreme phases in the SST 
manifestation of the coupled ocean-atmosphere phenomenon, ENSO (El Niño - Southern 
Oscillation), which represents the single most prominent mode of climate variability at seasonal 
to interannual time scales. These slowly evolving boundary conditions exert an influence on the 
tropical atmosphere by redistributing the surface heating, and thus the low level wind fields, 
tropical convection and subsequent atmospheric heating that drives the global atmospheric 
circulation. 

The land surface potentially provides additional sources of extended predictability for 
climate. The intrinsic time scales for land surface processes, though considerably longer than 
those of atmosphere-only processes, are typically less than the timescales of the ocean. Land 
surface variability also is fundamentally less dynamic than the atmosphere or ocean. 
Accordingly, much less research has focused on the impacts of land-atmosphere interactions, or 
the role of land surface initialization in forecasting. This is now changing, as recent studies 
(Fennessey and Shukla 1999, and references therein; Zeng et al., 1999; Koster, 2000) are 
highlighting a potentially important role for the land surface. 
 
2.2. ENSO predictability 
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The current understanding of ENSO has developed substantially over the past two decades 

(Neelin et al., 1998), but rests heavily on earlier contributions. During an El Niño event (see 
Figure 1), the central and eastern tropical Pacific warms as the warm upper ocean waters of the 
western Pacific extend eastward. This reduces the equatorial SST gradient and results in an 
eastward migration of active convection and rainfall, a slackening or even reversal in near-
surface easterly winds, and a decrease (increase) in atmospheric surface pressure in the eastern 
(western) Pacific (the Southern Oscillation proper) (McPhaden et al., 1998). The changes in 
near-equatorial winds allow even more of the warm western Pacific waters to move eastward. As 
the changes in the ocean lead to changes in the atmosphere, and vice versa, positive feedback is 
established. During the opposite extreme, now commonly called La Niña, anomalies of the 
opposite sign are observed to grow through analagous positive feedback. The period for a 
complete El Niño/La Niña cycle is typically three to seven years. 
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Figure 1. Schematic of normal and El Niño conditions in the equatorial Pacific, 
illustrating the important components of the coupled air-sea system. Under normal 
conditions, the thermocline, which separates the warm upper ocean from the colder 
abyssal ocean, is drawn towards the surface in the east as the zonal winds blowing from 
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east to west cause divergence in the oceanic surface currents away from the equator and 
colder sub-surface water is brought to the surface. This creates a zonal gradient in sea 
surface temperatures (SSTs), colder in the east and warmer in the west, that reinforces the 
easterly winds. The atmospheric circulation together with the pattern of SSTs places the 
deep convection over the western Pacific. Significant perturbations to any one of these 
components can potentially lead to a chain-reaction of positive feedback, developing into 
an ENSO event. See Section 2.2 for more details. (from McPhaden et al, 1998). 

 
 
In the 1960s, Bjerknes (1966, 1969, 1972) postulated that variability in ocean surface 

temperatures and in tropical Pacific surface winds were fundamentally coupled, and mutually 
reinforcing. He highlighted the role of equatorial oceanic upwelling and of SST gradients in 
modulating the meridional (Hadley) and zonal (Walker) overturning atmospheric circulations. 
These ideas have proven substantially correct, though incomplete as theory for the quasi-
oscillatory nature of ENSO. 

Theory behind ENSO's cyclic behavior developed during the 1970’s and early 1980’s as 
substantial progress was made in understanding the dynamics of the equatorial oceans. Of 
particular importance to current understanding was the description of how wind-forced 
equatorial Kelvin and Rossby waves, together with meridional boundary reflections, determine 
much of the observed variability in sea level and upper ocean circulation (Godfrey, 1975; 
Wyrtki, 1975; McCreary, 1976; O'Brien, 1976; Cane and Sarachik, 1977, 1981; Busalacchi and 
O’Brien, 1980, 1981; Philander and Pacanowski, 1981). In parallel, Gill (1980) proposed a 
simple mechanistic model for describing the heat-induced overturning circulations of the tropical 
atmosphere, which was then used to describe equatorial wind changes in response to SST 
variations associated with El Niño (Zebiak, 1982, 1986; Lindzen and Nigam, 1987). These 
complementary theories of how the ocean and atmosphere affect each other provided the 
essential elements for the first coupled models of ENSO (McCreary, 1983; Philander et al., 
1985; Cane and Zebiak, 1985; Zebiak and Cane, 1987). 

The Zebiak and Cane (1987; hereafter ZC) model was the first to describe self-sustained, 
continuously coupled oscillations arguably like the real ENSO. ZC also produced the first 
successful prediction of El Niño by forecasting the 1986-87 event 12 months in advance (Cane et 
al., 1986). ZC argued for the role of oceanic heat content, and in turn equatorial ocean dynamics, 
in setting the intrinsic time lags that could sustain an oscillation. Independent analyses (Suarez 
and Schopf, 1988; Battisti, 1988; Battisti and Hirst, 1989) presented a more complete theory 
known as the “delayed-oscillator” theory, which ascribes a critical role for oceanic adjustment 
(in the form of equatorial waves) in the evolution of the ENSO cycle. Elaboration and variations 
of this theory have been proposed more recently (e.g., Jin and Neelin, 1993a,b; Neelin and Jin 
1993; Picaut et al., 1997; Jin, 1997a,b; Neelin et al., 1998; Wang and Weisberg, 2000), although 
the essential contributions of oceanic wave dynamics and strong air-sea coupling remain. 

Over the past ten years numerous groups have developed increasingly complex and 
comprehensive general circulation models in an attempt to simulate ENSO better (e.g., Lau et 
al., 1992; Nagai et al., 1992; Latif et al., 1993; Roeckner et al., 1996; Frey et al., 1997; Shukla, 
1998). Although important challenges still exist (Latif et al., 1998), notable progress has been 
made in simulating ENSO in many models (Stockdale et al., 1998a). These new results 
substantiate the theories derived from the simpler predecessors that indicate a degree of 
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determinism, and thus potential predictability, in the coupled climate system that extends to 
several seasons. 
 
2.3. Climate predictability 
 
2.3.1. ENSO teleconnections 
 

Progress in collecting routine weather observations and the growth of scientific curiosity 
converged at the beginning of the 20th century allowing scientists to perform the first 
investigations of the global climate and its year-to-year variability (Allan et al., 1996). Through 
investigations of the Indian Summer Monsoon rainfall, Sir Gilbert Walker and colleagues 
documented various modes of seasonal climate variability (Walker, 1924; Walker and Bliss, 
1932). Walker is credited with discovering and naming the Southern Oscillation (SO), the 
vacillation of sea level pressure spanning the tropical Pacific basin that is associated with the 
changes in tropical Pacific sea surface temperature during El Niño and La Niña extremes. 
However, other researchers had also discovered and discussed this tropical Pacific variability 
(Hildebrandson, 1897; Lockyer and Lockyer, 1902a,b, 1904; Brooks and Braby, 1921). Their 
early studies were able to link some modes of climate variability, principally the SO, with 
seasonal rainfall patterns. These statistical relationships between regional rainfall or temperature 
patterns with larger scale modes of climate variability are often called "teleconnections". 

Much of the early work by Walker and others fell from favor in the late 1920's through the 
1950's largely because many of the teleconnections failed to hold during this period. Many 
present-day researchers suspect that decadal and longer-term climate variability, which Walker's 
limited data could not take into account, can affect ENSO teleconnections (Gershunov and 
Barnett, 1998; Krishna Kumar et al., 1999; Power et al., 1999; Rodo et al., 1999; Rajagopalan et 
al., 2000). After World War II, a network of weather stations was fostered by the World 
Meteorological Organization (WMO), and continues to form the backbone of weather and 
climate observations into the present. Much of the more recent empirical work documenting the 
relationships between ENSO and precipitation and temperature are based on these data. 

With increased understanding of ENSO in recent decades came a renewed interest in ENSO 
teleconnections. Several studies since the 1980's documented the large-scale patterns of rainfall 
associated with ENSO based on observed data. Ropelewski and Halpert (1987, 1989) highlighted 
broad regions in which precipitation anomalies exhibited a discernable response to the phase of 
ENSO. Correlation-based analyses (e.g., Kiladis and Diaz, 1989; Lau and Sheu, 1988) also show 
patterns of relatively strong relationships between ENSO and rainfall. The composite 
relationships between ENSO and regional rainfall or temperature variability do not occur in 
every ENSO event, however. As discussed in Section 3.3, the changes in SST boundary forcing 
shift the distribution of possible climate outcomes, making certain scenarios (such as above-
normal rainfall) more likely but not guaranteed. Rainfall or air temperature anomalies of the 
opposite sign to the most typical ENSO response can occur in even the strongest teleconnection 
regions (Figure 2). The degree to which ENSO events shift the range of climate outcomes locally 
depends on the region, season, and also the strength and spatial distribution of the ENSO-related 
SST anomalies. Two examples of how the rainfall anomalies expected during an El Niño event 
might be presented are shown for South America in Figure 3. The upper panel gives the 
information as a composite category (wetter or drier than average for DJF); whereas, the lower 
panel indicates how frequently the "expected outcome" occurred in previous El Niño events, also 
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known as conditional probabilities. The conditioned probabilistic climate anomalies suggest the 
relative robustness of regional teleconnections associated with ENSO (Mason and Goddard, 
2000). In addition to differences between events in tropical Pacific SST forcing and internal 
variability of the atmosphere, some studies suggest that extra-tropical SST anomalies may 
influence (Gershunov and Barnett, 1998) or be influenced by (Bladé, 1999) ENSO 
teleconnections.  ENSO teleconnections are also affected by SST anomalies in the tropical Indian 
and Atlantic Oceans that produce their own regional climate variations.  
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Figure 2. Probability distribution functions (PDFs) based on observed precipitation 
during the period 1890-1989. Three distributions are shown in each plot: 20 warmest El 
Niño events (heavy solid line); 20 coldest La Niña events, and 20 years for which 
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NINO3.4 was closest to zero anomaly (light solid line, with light gray shading), based on 
ranked anomalies for the season indicated at the top of each panel. Regions and 
associated seasons are based on identified ENSO teleconnection patterns from 
Ropelewski and Halpert (1987). 
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Figure 3. Expectations of anomalous rainfall during El Niño events for the December-
January-February season, based on historical observations. (a) Composite expectations 
(from Ropelewski and Halpert, 1987); (b) Conditional probabilities of rainfall being in 
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the wettest (dark shading, positive numbers) or driest (light shading, negative numbers) 
tercile during the 10 strongest El Niño events since 1950.  

 
 
2.3.2. The influence of other ocean basins 
 

Atlantic Ocean Influence. Despite ENSO's widespread influence, the importance of the 
tropical Atlantic sector in affecting regional climate variability has been recognized since the 
1970s. Relatively small changes in tropical Atlantic SSTs, particularly changes in the meridional 
gradient of SST, can shift the seasonal position of the Inter-Tropical Convergence Zone (ITCZ), 
directly impacting local climate. The average position of the ITCZ over the tropical Atlantic 
Ocean basin is oriented west-southwest to east-northeast and typically spans the deep tropics 
from northeastern Brazil to western Africa. The annual cycle of rainfall from northern Brazil to 
western Africa reflects the annual north and south excursions of the ITCZ. Thus, SST anomalies 
in the equatorial Atlantic Ocean, by varying the seasonal mean position of the Atlantic ITCZ, 
lead to interannual variability of rainfall over northern Brazil (Hastenrath and Lamb, 1977; 
Markham and McLain, 1977; Moura and Shukla, 1981; Hastenrath, 1984) and western Africa 
(Folland et al.,1986; Semazzi et al., 1988; Lamb and Peppler, 1991; Rowell et al., 1995; Ward, 
1998). 

The anomalous meridional SST gradient, which is sometimes referred to as the Atlantic 
Dipole (Weare, 1977; Hastenrath, 1978; Moura and Shukla, 1981), although perhaps erroneously 
(Houghton and Tourre, 1997; Enfield et al., 1999), is not independent of ENSO (Penland and 
Matrovosa, 1998; Latif and Grötzner, 2000). In the months following the peak of an El Niño 
event it is common for the northeast trade winds over the Atlantic to weaken, and warm SST 
anomalies to develop in the Caribbean and northern tropical Atlantic Ocean (e.g. Folland et al., 
1986; Aceituno, 1988; Wolter 1987; Marengo and Hastenrath, 1993; Enfield and Mayer, 1997). 
Because of this relationship between tropical Atlantic SST variability and ENSO events, it may 
be difficult to separate ENSO teleconnections from the local tropical Atlantic teleconnections. 
Over the past decade, however, a number of studies have identified the relative influence of the 
eastern Pacific (ENSO) and equatorial Atlantic SSTs on rainfall over the Caribbean and northern 
South America (Hastenrath, 1995; Enfield, 1996; Enfield and Mayer, 1997; Enfield and Alfaro, 
1999; Giannini et al., 2000). 

A second mode of variability exists in the tropical Atlantic, which appears to be independent 
of the variability in the northern tropical Atlantic described above. This mode evolves similarly 
to ENSO with SST variability is focussed along the equator and coupling between the SST and 
wind stress anomalies (Hirst and Hastenrath, 1983a; Philander and Pacanowski, 1986; Reverdin 
and McPhaden, 1986; Richardson and Walsh, 1986; Servain and Legler, 1986; Colin and 
Garzoli, 1987; Zebiak, 1993). However, direct connection between this equatorial Atlantic 
variability and ENSO has not been established. This mode, which is most pronounced in boreal 
summer, can affect rainfall anomalies in the Gulf of Guinea region (Wagner and da Silva, 1994), 
and parts of central (Hirst and Hastenrath, 1983a,b; Nicholson and Entekhabi, 1987) and 
southern Africa (Jury, 1996). 
 

Indian Ocean Influence. It is even more difficult to separate Indian Ocean teleconnections 
from tropical Pacific teleconnections than is the case for the Atlantic sector. SST variability in 
the Indian Ocean correlates highly with that of the tropical Pacific, with the tropical Pacific 
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leading by approximately 3 months (e.g. Nicholson and Nyenzi, 1990; McCreary et al., 1993; 
Nicholson, 1997; Tourre and White, 1997; Goddard and Graham, 1999; Klein et al., 1999; 
Reason et al., 2000). Modeling studies show evidence that the atmospheric changes induced by 
ENSO events are capable of affecting the Indian Ocean as observed (Lau and Nath, 1996, 
Venzke et al., 2000). 

The strong relationship between the Indian Ocean and the Pacific raises questions about 
which ocean's SST variability is actually responsible for the observed ENSO teleconnections in 
the Indian Ocean sector. Over southern and eastern equatorial Africa, where rainfall variability is 
correlated significantly with ENSO events (Figure 4a-c), attempts have been made to identify the 
relative contribution of the Pacific and Indian Ocean, and suggest that the Indian Ocean 
contributes more to the regional variability (Rocha and Simmonds, 1997; Tennant, 1998). Thus, 
many statistical approaches to forecasting seasonal rainfall over southern and eastern Africa 
consider conditions in the Indian Ocean (Hastenrath et al., 1995; Mason, 1998; Landman and 
Mason, 1999a; Thiaw et al., 1999). Modeling studies have demonstrated that the Indian Ocean 
drives the climate variability over eastern Africa (Figure 4d). Tropical Pacific forcing, applied in 
isolation, actually produces rainfall variability opposite to that observed over eastern equatorial 
Africa (Figure 4e; Goddard and Graham, 1999). In contrast, rainfall variability over the Indian 
sub-continent correlates better to tropical Pacific variability than to local Indian Ocean variability 
(Shukla and Misra, 1977; Weare, 1979; Pant and Parthasarathy, 1981; Ropelewski and Halpert, 
1987). 

The physical mechanisms associated with SST variability in the tropical Atlantic and Indian 
Oceans are not as well understood as those of ENSO. Most of the Atlantic SST forecast methods 
in common use are statistical. Similarly, whether the Indian Ocean's response to ENSO results 
from dynamics or thermodynamics is currently in debate (Saji et al., 1999; Venzke et al., 2000). 
The PIRATA program (Servain et al., 1998) may provide the observational data necessary for 
better understanding of Atlantic Ocean variability. A similar observing system in the Indian 
Ocean is clearly needed. In addition, a newly launched global system of "sounding buoys" under 
the ARGO program (Argo Science Team, 1999) may eventually contribute to further 
understanding and improved modeling for all the global tropical oceans. Until then, prediction of 
Indian and Atlantic SST is likely to remain in the realm of statistical/empirical techniques. 
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Figure 4. Results from GCM experiments showing importance of Indian Ocean for 
simulating observed precipitation response over eastern and southern Africa during the 
November-December-January season (Goddard and Graham, 1999). The top panel (a) 
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shows the 1st mode of SST (homogeneous predictor maps) from CCA analysis between 
the Indian Ocean SSTs and observed African precipitation anomalies and between the 
Pacific Ocean SSTs and African precipitation anomalies. Shading indicates positive 
temperature anomalies, with 0.2C contour levels. The subsequent panels show the 
African precipitation anomalies (heterogeneous predictand maps) related to Indian Ocean 
SSTs (left column: b1, c1, d) and those related to Pacific Ocean SSTs (right column: b2, 
c2, e), using rainfall anomalies from observations (b1,b2); a GCM forced with global 
observed SSTs (GOGA) (c1,c2); a GCM forced with observed SSTs only in the Indian 
Ocean (IOGA) and annual cycle of SSTs elsewhere (d); and a GCM forced with observed 
SSTs only in the tropical Pacific Ocean (POGA) and annual cycle of SSTs elsewhere. 
Shading and solid contours imply positive rainfall anomalies, with contours at starting at 
+/- 0.5 mm/day and an interval of 1.0 mm/day above magnitudes of 1.0. Notice that the 
IOGA experiment (d) replicates the rainfall pattern seen in the analysis of the 
observations (b1,b2) and the GOGA experiments (c1,c2), but the pattern of rainfall 
anomalies in the POGA experiment (e) is quite different. 

 
 
 

3.   PREDICTING THE OCEAN-ATMOSPHERE SYSTEM 
 
3.1. Predicting boundary conditions 
 
3.1.1. Sea-surface temperature prediction 
 

Observations. Current predictions of the ocean boundary layer depend on several key 
observations that have been available in real-time since the 1980s. By far the most developed 
observing system for the global oceans is the TAO (Tropical Atmosphere-Ocean) buoy array, 
which consists of more than 70 moorings in the tropical Pacific (8°N to 8°S, 137°E to 95°W; see 
Hayes et al., 1991 and McPhaden et al., 1998 for comprehensive summaries). These buoys make 
detailed measurements of surface winds, humidity, and temperature, and subsurface temperature 
and salinity, and continuously relay the information via satellites. The establishment of this 
observing system has allowed a more detailed understanding of processes surrounding ENSO, 
and it has provided critical information to initialize ocean models for seasonal predictions (Latif 
et al., 1998; Stockdale et al., 1998a). Another important data source for subsurface thermal 
conditions, particularly outside the tropical Pacific, are measurements from merchant ships that 
measure depth profiles of temperature and sea surface salinity. Observing ships also contribute to 
data sets of surface wind stress and surface air pressure. Other in situ measurements include a 
network of tide gauge stations that have been in place for decades (Wyrtki, 1985; Mitchum et al., 
1994). Relatively recently, satellite-based data for SST, winds, and sea level topography have 
become available (e.g., Fu et al., 1994; Liu et al., 1996). The potential usefulness of this data is 
great, as satellite products have the capability to offer higher resolution and more uniform 
coverage in both space and time than other systems. 

The best observed oceanic field is SST. Quality SST observations are important for all 
aspects of prediction. First, having access to such data provides the ability to closely monitor 
ENSO and other variability. Second, timely access to SST data allows for continuous verification 
of SST predictions that are used to forecast climate (see Section 3.2). Third, having reliable SST 
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observations may reduce uncertainty in predictions of climate that are based on observed SSTs. 
And finally, some climate-based decisions are tied directly to these oceanic observations, such as 
for the fishery industry (Lehodey et al., 1997; Carr and Broad, 2000), in which case high 
resolution, accurate, and current observations are crucial (GOOS, 1998). The most commonly 
used products are obtained from a blending of in situ observations from ships of opportunity and 
buoys, and satellite observations (Reynolds and Smith, 1994). The relatively uniform coverage 
of the satellite measurements, and the large-scale bias correction of the satellite signal based on 
in situ measurements, provides for a high-quality analysis on weekly time scales. Prior to the 
satellite era (early 1980’s) SST data is acceptably good in many areas since the mid-1950’s. 

For prediction of SSTs, especially through the use of dynamical models, other physical 
components of the air-sea system must be well measured and easily accessible. Crucial to all 
ocean model simulations or forecast initializations are surface fluxes, especially momentum 
fluxes. The first ENSO prediction schemes used only surface wind stress to generate oceanic 
initial conditions, and even in the presence of considerable ocean data, wind forcing remains an 
extremely important quantity for initializing ocean models. Sea-surface elevation is increasingly 
being considered in prediction, although in the initialization of the more complex models the use 
of sea level data remains exploratory (Chen et al., 1998; Segschneider et al., 1999; Ji et al., 
2000). A current major problem is the decomposition of sea level into the separate contributions 
from temperature and salinity. In the absence of significant subsurface salinity measurements, 
the decomposition requires statistical estimates of inherently limited accuracy. Oceanic velocity 
data are also valuable, particularly as sources of validation for ocean models. Such data are 
provided routinely by drifting buoys and moored current meters, although the latter are available 
only at a very few sites. 
 

Statistical forecasting methods. Most statistical forecasts of SSTs focus on the ENSO 
phenomenon and involve prediction of a field of tropical Pacific SSTs, or a simple area-average 
over representative regions of the equatorial Pacific, such as the NINO3 (SST anomaly averaged 
over the region 5°S-5°N; 150°W-90°W), NINO3.4 (5°S-5°N; 170°W-120°W), or NINO4 (5°S-
5°N; 160°E-150°W) areas. These ENSO predictions frequently are derived from previously 
observed in situ sea temperatures, surface pressure, and/or wind stress anomalies, although 
relationships with atmospheric anomalies outside of the tropical Pacific sector are sometimes 
considered (Xu and von Storch 1990; Barnett et al., 1991). The most commonly used statistical 
methods describe linear deterministic relationships between the predictor and a single predictand 
index, and include regression (Knaff and Landsea, 1997), method of analogues (van den Dool, 
1994), and singular spectrum analysis (Keppenne and Ghil, 1992). Linear multivariate methods 
for forecasting ENSO in which the predictand is a field, most often SST, are widely used also. 
One class of such models keys on autoregression, either through Markov modeling (Xue et al., 
2000) or through linear inverse methods optimized to fixed lead-times (Penland and Magorian, 
1993; Penland and Sardeshmukh, 1995). The second class of models uses covariance or 
correlation between multiple fields, at fixed lead-times. The most commonly used algorithm is 
canonical correlation analysis (CCA) (Graham et al., 1987a,b; Barnston and Ropelewski, 1992), 
although other methods such as singular value decomposition (SVD), and combined empirical 
orthogonal functions (EOFs) have also been used (Bretherton et al., 1997). Recent attempts to 
use non-linear methods have been made (Tangang et al., 1997, 1998a,b; Hsieh and Tang, 1998), 
but do not provide significant improvements in skill over linear methods (Tang et al., 2000). 
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Although probabilistic methods of statistical prediction have been used in climate forecasts (as 
discussed in Section 3.2), their application in forecasting SSTs has been minimal. 

Outside the tropical Pacific, there are fewer examples of statistical forecasts of SSTs. 
However, some recent attention has been given to forecasts of global SSTs using autoregressive 
models (Navarra et al., 1998) and CCA (Mason et al., 1999; Landman and Mason, 2000). Also, 
tropical Atlantic temperatures are now regularly forecast using linear inverse modelling (Penland 
and Matrosova 1998) and CCA (Pezzi et al., 1998; Nobre and Repelli, 2000). 
 

Dynamical forecasting methods. A spectrum of dynamical models, ranging from the 
relatively simple (so-called intermediate) models initially used to predict ENSO, to 
comprehensive coupled general circulation models, are used routinely for SST prediction (Latif 
et al., 1994, 1998; Stockton et al., 1998a). Intermediate models currently are run only in a 
regional context, focusing on the tropical Pacific and ENSO (e.g., Chen et al., 1999; Kleeman et 
al., 1995). Both atmospheric and oceanic components are represented dynamically, but 
simplified to the level of equatorial, linear, shallow-water equations. Parameterizations of the 
thermodynamics of both atmosphere and ocean are more complex, and nonlinear. Outputs are 
predicted winds and SST over the coupled domain. 

The commonly used hybrid models involve a statistical atmosphere model, coupled to either 
an intermediate ocean model (Kang and Kug, 2000) or to an ocean GCM (Barnett et al., 1993). 
In all cases, the atmosphere model is derived from either SVD or CCA based on observed SST 
and surface wind (stress). Outputs are surface wind stress and SST predictions over the coupled 
domain, typically the tropical Pacific. 

In recent years, development efforts have been focussed toward relatively comprehensive 
coupled models for SST prediction. One approach employs a full ocean GCM and a global 
atmospheric GCM, but air-sea coupling occurs only in the limited domain of the tropical Pacific, 
and either climatology or persistence of SST anomalies is prescribed elsewhere (Ji et al., 1996; 
Kirtman et al., 1997). The additional assumption of so-called anomaly coupling is often made; 
that is, the coupling fields (i.e. heat fluxes and wind stress) are computed from the simulated 
anomalies of each component model (relative to a forced, uncoupled climatology), added to the 
appropriate observed climatology. Anomaly coupling minimizes errors associated with 
simulating aspects of the observed mean climate or mean annual cycle, but at the possible 
expense of introducing incorrect parameter sensitivities under certain conditions (Neelin and 
Dijkstra, 1995). 

The outputs of fully coupled, and global domain GCMs (e.g., Rosati et al., 1997; Stockdale 
et al., 1998a,b; Segschneider et al., 1999) include the full state space of both atmosphere and 
ocean (and land surface). Varying approaches are taken for the treatment of sea-ice in the polar 
regions: in some cases sea-ice is simply specified, in others an interactive sea-ice model is 
included. Sometimes the models are used in a one-tier approach, directly forecasting climate as 
well as SST (Stockdale et al., 1998b), but more typically the coupled GCMs are used to forecast 
SST only. In that case, the coupled models are configured at a moderate resolution of 3-4 degrees 
(adequate to resolve many of the critical tropical air-sea interactions), and then higher resolution 
AGCM’s are used with the predicted SST’s to forecast climate (see Section 3.2 below), an 
example of the two-tiered approach. 

Apart from these global ocean modeling efforts, dynamical modeling of the Atlantic Ocean 
has received increasing attention over recent years (Philander, 1986; Zebiak, 1993; Chang et al., 
1997). Very recently, some studies have been directed toward the Indian Ocean sector as well 
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(Saji et al., 1999; Webster et al., 1999). Yet the level of understanding of coupled climate 
variability in these oceans is extremely limited, in comparison to that of the Pacific (i.e., ENSO). 
Central to the problem is the fact that the variability is weaker in these sectors, and most likely 
impacted remotely by ENSO and perhaps other factors. Additional basic research is needed, with 
continuing efforts to improve model simulations and predictions. In the extratropics, the situation 
is also very uncertain. To date there has been no convincing demonstration of significant local 
air-sea coupling in the extra-tropics operating at seasonal time scales, and involving the sub-
mixed layer ocean. This too continues as an area of active research. 
 

Forecast performance. Since the first prediction of the 1986-87 El Niño (Cane et al., 1986), 
steadily intensifying efforts in statistical, dynamical, and hybrid model prediction have led to 
more than a dozen forecast systems that are currently being used to make regular predictions 
(Kirtman, 2000). Due to the known dominance of ENSO in global climate variability, forecast 
skill for ENSO indices such as NINO3, NINO3.4, NINO4 are important measures of 
performance. Comparisons among different forecast methods have been made for different 
ENSO events over the past decades (Barnett et al., 1988; Barnston et al., 1994; Barnston et al., 
1999a; Landsea and Knaff, 2000). Figure 5 shows forecasts for the period covering mid-1996 to 
late 1998 from 3 dynamical and 3 statistical models; this is a subset of models from an extensive 
comparison study by Barnston et al. (1999a). It must be noted that the period shown is very 
limited and the apparent skill of any one tool may not be representative of its true ability. 
However, the magnitude of the 1997/98 El Nino event and its associated climate impacts make it 
an important case study for ENSO prediction tools. This comparison shown in Figure 5 reveals 
that at present, forecasting methods of all types are generally competitive. During the 1997-98 El 
Niño event, the GCM-based forecasts with active ocean data assimilation did perform better than 
simpler models without ocean data assimilation (for example, compare NCEP coupled model 
against the COLA coupled model, Figure 5). However, some statistical forecasts did as well as 
any dynamical model in predicting NINO3 (Barnston et al., 1999; Landsea and Knaff, 2000). 
The approximately equal of skill of the different forecast methods is not too surprising: the 
deterministic processes that the dynamical models describe explicitly lead to systematic patterns 
in the data, extractable and useful for statistical prediction. However, dynamical models have an 
inherent but yet unrealized advantage; namely, that with improved and more comprehensive 
representations of the real physics, there is room for further improvements in prediction skill. 
The only comparable means to improve statistical models is to increase the volume of 
observational data, a task fundamentally more limited. Thus, considerable energy is now being 
invested in improved dynamical prediction at many centers worldwide. 
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Figure 5. Plots of tropical Pacific SST forecasts (dashed lines) and observations (solid 
lines) over the Jun 1996 - Sep 1998 period for 6 models projecting the state of ENSO at 
lead times of 3.5, 6.5, and 9.55 months. The specific predicted regions and SST units 
vary by model as shown in the upper-right corner and by the vertical axis label, 
respectively. Dotted lines connect the observation centered at the approximate start time 
to the earliest (3.5 month lead) forecast. This is done for the readers' convenience only; 
the beginning of the dotted line does not represent the model's actual initialization nor its 
forecast at very short lead times. The 3-month periods shown on the abscissa are denoted 
by their middle month. The first three panels show the performance of the statistical 
models (indicated above each panel), the next three the dynamical models.  
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High skill in forecasting ENSO events with lead-times of twelve months or more has been 
claimed (Cane et al., 1986; Latif et al., 1998). However, operational skill estimates, which 
provide the only truly unbiased indications of forecast skill, suggest that some ENSO events can 
be forecast qualitatively only a few months in advance (Barnston et al., 1999a; Landsea and 
Knaff, 2000), and occasionally only after an event has begun (Chen et al., 1997). The difficulty 
in predicting ENSO phase-changes has been attributed to seasonal variability in the predictability 
of the equatorial Pacific. A "springtime barrier" has been noted, as lower skill is generally 
observed for predictions that extend through boreal spring. (Blumenthal, 1991; Goswami and 
Shukla, 1991; Latif and Flügel, 1991; Latif and Graham, 1992; Webster and Yang, 1992; 
Balmaseda et al., 1995; Webster, 1995; Davey et al., 1996; Moore and Kleeman, 1996; Flügel 
and Chang, 1998; Latif et al., 1998). The assumed reason for such a barrier is that the ENSO 
signal (year-to-year variance in SST anomalies) is a minimum in March-May, but the noise of 
the tropical Pacific air-sea system is nearly constant (Xue et al., 1994). Thus the signal-to-noise 
ratio in the equatorial Pacific is small during boreal spring, and causes the forecast evolution 
through this season to be more sensitive to random variability. The spring barrier is most well 
defined during decades of relatively poor predictability (Balmaseda et al., 1995), but is not 
evident in all ENSO-prediction models, and so may not be an inherent feature of the ENSO 
phenomenon (Chen et al., 1995). 

In addition to being a function of the ENSO phase, skill levels have varied inter-decadally, 
with relatively higher skill in the 1980s, and lower skill in the 1970s and 1990s (Chen et al., 
1995; Balmaseda et al., 1995; Ji et al., 1996; Kirtman and Schopf, 1998). This low-frequency 
variability in the predictability of ENSO events may be a reflection of changes in the role of the 
delayed-oscillator mechanism in equatorial Pacific ocean-atmosphere dynamics (Goddard and 
Graham 1997). 

Skill comparisons beyond the tropical Pacific and ENSO are few, as few predictions extend 
to the broader domain. Some statistical schemes target the tropical Atlantic and Indian Oceans 
(as discussed above), and near global domain coupled GCM forecasts exist already. Performance 
has been evaluated generally with temporal correlations between observed and forecast SST 
(Penland and Matrosova, 1998; Repelli and Nobre, 2000), but robust validation of many of the 
current coupled GCM forecasts is presently limited by sample sizes. The expense of running 
these models often limits the number of retrospective forecasts conducted, and further work is 
needed. Those skill measures that are available indicate that forecast skill outside the tropical 
Pacific is distinctly lower than that for ENSO. Since global SST forecasts are required for two-
tiered forecasting systems (Hunt, 1997; Mason et al., 1999) the need to improve skill beyond the 
tropical Pacific represents a major challenge for future forecast research. 
 
3.1.2. Land-surface prediction 
 

The land surface also serves as a boundary condition on the atmosphere, but it is often treated 
differently than SSTs. Prediction or even persistence of anomalous conditions of the land 
surface, such as snow or soil moisture, are rarely incorporated in climate prediction. A major 
limitation is that there is no global observational analysis of soil moisture (wetness) with which 
to validate or initialize models. Even climatological soil moisture generally is estimated using a 
model (Mintz and Serafini, 1992). Currently, weather forecast models typically are run with 
interactive land surface parameterizations, and the atmospheric data assimilation process results 
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in estimates of soil moisture that can be utilized for climate purposes (Fennessy and Shukla, 
1999), but this approach has not yet extended to seasonal climate forecasts. 

Until recently the physics contained in the land surface component has been very crude and 
simplistic, and the land-surface did not interact with the overlying atmosphere. The first 
interactive land surface models followed the so-called “bucket” approach; i.e., a simple one-
dimensional system that includes a reservoir, a precipitation source, and calculated fluxes at the 
surface (Manabe et al., 1969). A more recent class of models includes explicit vegetation, and its 
impacts on surface energy, water, and momentum transfer (Sellers et al., 1986, Dickinson et al., 
1998). This class of model has been further developed, and can be considered state-of-the-art at 
present. A new class of model under development will go further in attempting to account for 
sub-grid scale variability and the effects of topography on runoff (Koster et al., 2000). 

Numerous studies using these land surface models have investigated and identified important 
impacts of land surface processes on climate and its variability (see reviews in Dirmeyer and 
Shukla, 1993; Eltahir and Bras, 1996). Studies focusing on seasonal prediction impacts are 
suggestive of important land surface initialization impacts under some conditions (Fennessy and 
Shukla, 1999). For example, the importance of initializing the soil moisture for simulations of 
drought and flood events at seasonal or longer time scales has been demonstrated (Brankovic et 
al., 1990; Fennessy et al., 1994). A number of new research initiatives under development will 
address this issue further, and can be expected to occupy an important position in the future 
research agenda. 
 
 
3.2. Predicting climate 
 

Observations. Routine observations of temperature and rainfall at selected locations have 
been taken for centuries. These observations are essential to diagnostics and process studies, for 
building statistical climate models, for understanding and improving dynamical climate models, 
and for validating both statistical and dynamical models. Routine real-time monitoring of the 
current climate, such as drought and flood conditions, is also important to provide the 
appropriate context for interpretation of climate forecasts. 

Temperature measurements have been taken at sufficient spatial resolution to provide 
estimates of seasonal and annual global air temperatures over land from the mid-19th century to 
the present (Jones, 1994). While observations at less than two hundred adequately spaced 
locations are sufficient for global temperature estimates, far more observations are necessary for 
the study and specification of regional, seasonal to interannual variability. Europe, North 
America and Australia have fairly good records extending back a hundred years or more, but 
much of the remaining land areas of the world have had adequate regular temperature 
observations only from the 1950s forward. The availability of good monthly station data in the 
latter half of the 20th century is partly due to efforts of the World Meteorological Organization to 
coordinate the regular international exchange and archiving of monthly temperature and rainfall 
data. Some 1600 weather stations have been designated official climate stations and have agreed 
to exchange monthly climate summaries, called CLIMAT records, on a routine basis. However, 
the global observing network has thinned in the last two decades. A number of efforts are 
underway to arrest the recent decline in climate networks, such as the designation of a surface 
observing network of about 1000 stations under the Global Climate Observing System (GCOS). 
While these observing networks and the exchange of these data is an achievement, climate 
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variability on decadal and longer temporal scales limit the use of this 50-year record in some 
seasonal climate prediction problems. 

The observational record for precipitation generally parallels that of temperature. However, 
the smaller spatial and temporal scales of variability exhibited by precipitation make global 
seasonal patterns of rainfall more difficult to classify. As with temperature, some regions, again 
mainly Europe, Australia and parts of North America, have reasonable historical precipitation 
records back to the beginning of the 20th century. The advent of satellite precipitation estimates 
(Xie and Arkin, 1997) has provided high spatial resolution data sets for the study of global 
rainfall, including over the world's oceans, albeit with limitations in accuracy. 

The simplest methods for seasonal climate prediction are based purely on local observations 
of past and current climate. The use of the climatological average as the "prediction" is a valid 
starting point, or one can assume that a recent seasonal to multi-year climate anomaly will persist 
through the upcoming season(s) (Huang et al., 1996). These methods have been used for 
centuries, and are used implicitly today by many people on a regular basis. The development of 
prediction methods that are superior to these simple approaches is the goal of most climate 
prediction research. 
 

Statistical models. Implicit in any statistical model is that antecedent, current, or expected 
future values of predictor variables can be used to predict the future state or evolution of the 
predictand based upon historical observations of mathematical relationships between the 
predictors and predictands. With the development of global observing networks that measure air 
temperature, sea temperature, precipitation and some aspects of the atmospheric circulation, 
statistical prediction methods have evolved considerably through the 20th century. 

In most cases, statistical forecasts of seasonal climate anomalies depend heavily upon the 
SST boundary forcing, which is the fundamental source of predictability in two-tiered dynamical 
modeling approaches. Antecedent or forecast SSTs form the sole, or at least dominant, predictors 
of models for the Sahel (Bah, 1987; Folland et al., 1991; Barnston et al., 1996; Ward, 1998; 
Thiaw et al., 1999), eastern Africa (Mutai et al., 1998), southern Africa (Klopper et al., 1998; 
Landman and Klopper, 1998; Mason, 1998; Mattes and Mason, 1998; Landman and Mason, 
1999a; Mason and Tyson, 1999), northeast Brazil (Ward and Folland, 1991; Uvo et al., 1998), 
the Pacific Islands and Alaska (Barnston and He, 1996; Yu et al., 1997), Australasia (Casey, 
1998), Europe (Johansson et al., 1998), the United States (Barnston, 1994), and Canada (Shabbar 
et al., 1997). Most predictability is associated with the tropical Pacific. The skill of seasonal 
climate forecasts may be minimal in non-ENSO years (Barnston et al., 1999b; Landman and 
Mason, 1999a), but important exceptions include central Africa and the Indian monsoon areas 
(Yang et al., 1998). The simplest models include only a single ENSO index (Hutchinson, 1992), 
and simple average responses to ENSO events do provide seasonal forecasters with valuable 
initial guidance (Ropelewski and Halpert, 1996). A slightly more sophisticated approach to 
relating seasonal climate to ENSO indices uses both the present phase and the recent trend in the 
to indicate likelihood of above or below median precipitation (Stone and Auliciems, 1992).  
However, inter-El Niño differences in atmospheric circulation exist, and these differences may 
be inherently unpredictable in some cases (Kumar and Hoerling 1997). Thus, the probabilistic 
nature of such relationships should be emphasized (Mason and Goddard, 2000). 

Some improvements in skill have been claimed when, in addition to SSTs, atmospheric 
predictors are included (Hastenrath et al., 1995; Makarau and Jury, 1997; Francis and Renwick 
1998; Jury 1998; Jury et al., 1999a; Philippon and Fontaine, 1999). The addition of atmospheric 
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predictors forms an important component of analog techniques (Livezey and Barnston, 1988; 
Wagner, 1989). In most cases, however, these predictors are aspects of the atmospheric ENSO 
signal, and so do not imply that the atmosphere has sufficient memory of its own to provide 
predictability at seasonal time scales. Included with this class of statistical models are those for 
the Indian Monsoon, where precursors indicate either some aspect of ENSO (Shukla, 1987; 
Krishna Kumar et al., 1995), despite a relatively weak ENSO-signal (Yang et al., 1998), or 
provide a measure of the pre-monsoon thermal conditions over the Asian land mass (Vernekar et 
al., 1995; Sankar Rao et al., 1996; Webster et al., 1998), in both cases implying that 
predictability is derived from boundary forcing. 

All linear statistical prediction schemes suffer from similar instabilities in precursor-
predictand relationships (Hastenrath, 1995; Francis and Renwick, 1998). Over India, for 
example, associations between ENSO and atmospheric precursors of the monsoon are unstable 
because of interdecadal variability in ENSO variance, and have led to interdecadal variability in 
monsoon predictability (Parthasarthy et al., 1991; Hastenrath and Greischar, 1993; Annamalai, 
1995; Krishna Kumar et al., 1999a; Sahai et al., 2000). Recent weakening of the monsoon – 
ENSO association is likely to compound the problem (Krishna Kumar et al., 1999b). 

This lack of robustness in predictor-predictand relationships often reflects an absence of 
explicit references to physical processes in the construction of statistical models for seasonal 
climate prediction. Given the enormous pool of potential predictors, and limited temporal 
degrees of freedom of most geophysical data, statistical models require rigorous testing in 
operational settings to ensure significance. Even cross-validated estimates of skill can be biased 
(Barnston and van den Dool, 1993; Hastenrath, 1995), and so careful retro-active skill testing 
should be encouraged (Wilks, 1995) using a variety of skill score measures (Zhang and Casey, 
2000). 

Seasonal climate forecasts predominantly focus on mean temperatures or total rainfall; little 
progress has been made in forecasting more detailed variability such as rainfall onset (Ahago, 
1992; Briggs and Wilks, 1996). Notable exceptions include attempts to forecast frequencies and 
tracks of tropical cyclones. The main focus has been on North Atlantic hurricanes (Gray et al., 
1992, 1994; Hess et al., 1995; Lehmiller et al., 1997; Mielke and Berry, 2000), but some 
attention has been given to the Northwest Pacific (Chan et al., 1998), the Southwest Indian 
Ocean (Jury et al., 1999b), and the Southwest Pacific (Basher and Zheng, 1993). Looking 
beyond forecasts of seasonal conditions, very few efforts have been made to forecast climate at 
interannual time scales (White, 2000). In most cases such long-lead forecasts depend on the 
extrapolation of trends and cycles (Dyer and Tyson, 1977; Tyson and Dyer, 1978, 1980; Currie, 
1993). 

Regression models, including CCA, are the most commonly used statistical techniques for 
forecasting climate anomalies. Most models for the Indian monsoon use multiple linear 
regression, and this method, together with CCA, has been adopted extensively in Africa also. 
Auto-regressive approaches have received attention recently (Elfandy et al., 1994; Chu et al., 
1995; Mentz et al., 2000), as have probabilistic methods, most notably discriminant analysis 
(Ward and Folland, 1991; Casey, 1995; Carter and Elsner, 1997; Lehmiller et al., 1997; Mason, 
1998; Mattes and Mason, 1998; Mutai et al., 1998; Mason and Mimmack, 2000). 
 

Numerical models. Two types of numerical models are currently used for climate prediction: 
atmosphere-only general circulation models (AGCMs) and coupled ocean-atmosphere general 
circulation models (CGCMs). Both are based on the full physical equations of motion. The 
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atmospheric equations in these models can be solved either on model grid points or spectrally, 
where the highest spectral wave number resolved determines the effective grid resolution of the 
model. These models are not entirely free of statistical assumptions, however. Because of the 
relatively coarse resolution used in GCMs, physical processes occurring on scales smaller than 
the model's grid can resolve are parameterized empirically. Mathematical relationships, based on 
observed data, describe the larger-scale aggregate behavior of fundamentally small-scale 
processes such as convection and radiative transfer. 

A 'two-tiered' climate prediction approach is used with AGCMs (Hunt, 1997; Bengtsson et 
al., 1993), in which the boundary conditions are predicted first and are then used to force the 
overlying atmosphere. The atmosphere is a slave to the prescribed boundary conditions. In 
CGCMs, both the atmosphere and the boundary conditions are allowed to evolve freely and 
influence each other. This free, coupled evolution is one advantage of the CGCM (or one-tiered 
approach). A primary drawback of the current generation of CGCMs is that the SST field tends 
to "drift" away from realistic values as the integration proceeds, thus forcing unrealistic patterns 
in the atmospheric anomalies. Drift may occur rapidly, because of an imbalance in initial 
conditions, or slowly, because of internal parameterization in one of the component models or 
from the coupling itself (i.e. flux errors) (Delecluse et al., 1998). Consequently, CGCMs are 
most often employed to predict only the SST field (Section 3.1.1). Model output statistics (MOS) 
corrections sometimes are applied to these predicted SST fields to bring the amplitude and/or 
spatial pattern into better agreement with the observed character of the variability before they are 
used to forced the atmospheric anomalies. Because of these model weaknesses, AGCMs are still 
more commonly used than CGCMs (Hunt, 1997; Mason et al., 1999); however, CGCMs are 
beginning to emerge in the arena of operational climate forecasting (Stockdale et al., 1998b). 

Because numerical models are capable of outputting a full range of atmospheric variables 
(winds, humidity, cloudiness, heat fluxes, etc.), they are useful to climate research for process or 
diagnostics studies as well as prediction. Until recently, most emphasis had been placed on the 
prediction, analysis, and diagnosis of anomalous geopotential heights (700 hPa - important level 
for moisture transport; 500 hPa - important steering level for mid-latitude storms; 200 hPa - 
important diagnostic of upper level divergence and thus convective activity in the tropics). 
Through the early 1990s, researchers were still inquiring whether or not GCMs were even 
suitable for seasonal climate prediction (Palmer and Anderson, 1994; Kumar and Hoerling, 1995; 
Kumar et al., 1995; Stern and Miyakoda, 1995). Clearly if a model is incapable of simulating the 
large-scale atmospheric circulation, it will not be able to simulate regional-scale variability such 
as rainfall. It is now accepted that GCMs can replicate much of the large-scale flow, including 
anomalous patterns in geopotential fields, although the correlation between a GCM's 
geopotential height fields and that from observations is generally higher in times of strong SST 
forcing (Kumar and Hoerling, 1998). Today, the typical variables examined for prediction 
purposes are those variables that concern society most: near-surface air temperature and 
precipitation. 

The GCM seasonal predictions consist of an ensemble of integrations, i.e. a set of forecasts 
that verify at the same time (Sivillo et al., 1997). The ensemble members can differ in their 
boundary conditions, initial atmospheric conditions, and/or model physics. An ensemble 
approach allows for separation between the repeatable portion of the anomalous climate signal 
due to boundary layer forcing and the portion that is due to internal variability or chaos in the 
atmosphere. Ensemble-based predictions lead naturally to probabilistic climate forecasts (as 
discussed in Section 3.3). 
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The detail in space and time that many users of forecast information claim is necessary has 
driven research into better resolving seasonal predictions for temperature and precipitation. 
Methods for increasing spatial and temporal resolution (downscaling) of the global predictions 
and the research needed to apply those methods in a prediction setting are discussed in Section 
3.7.2. 

 
 Dynamical v. statistical tools. Recently researchers have begun to question the degree to 

which the added expense and complexity of GCMs compared to statistical models is justified, 
but detailed comparisons of statistical and dynamical model skill are still rare. Statistical 
predictions of the Indian monsoon rainfall do provide an example of a region in which statistical 
models continue to out-perform dynamical model predictions (Hastenrath, 1995). The dynamical 
predictions suffer from a consistently large ensemble spread (Webster et al., 1998), which is 
compatible with the theory that chaotic weather systems in the Southern Hemisphere may trigger 
breaks in the Asian monsoon, providing short-term predictability, but limiting seasonal 
predictability (Rodwell, 1997). Nevertheless, the statistical models have identified robust 
atmospheric precursors, and demonstrate useful skill over independent retro-active testing 
periods (Parthasarathy et al., 1991, 1993; Prasad and Singh, 1992; Singh et al., 1995; Yang et al., 
1996; Thapliyal, 1997; Venkatesan et al., 1997; Singh and Chattopadhyay, 1998). 

Over southern Africa, the dynamical models appear to be slightly better (Landman et al., 
2000), possibly because of instability in important SST-climate associations that are likely to 
weaken the skill of linear statistical models for the region (Landman and Mason, 1999b). Over 
North America, the multi-year results from a statistical model are found to outperform some 
AGCMs (Anderson et al., 1999). However, at certain times, such as when ENSO is changing 
phase, the statistical response in climate over North America may not be robust and AGCMs 
may better simulate the appropriate climate shifts (Kumar et al., 2000b) due to the full global 
patterns of anomalous boundary conditions. 

One advantage of numerical climate models over statistical models is that an extensive 
observational database is not required to generate a prediction. However, in order to make a 
meaningful forecast, observational data is crucial for both the assessment of the model's 
historical simulations or retrospective forecasts and also for the validation of current operational 
forecasts.  Another advantage of numerical models is that they are not limited by non-stationarity 
of climate or by extreme or unusual outcomes that may not have occurred in the available 
historical record. However, numerical models are complex and can be expensive to run. Most 
importantly, the regions where numerical models exhibit skill vary with season and variable, and 
even different GCMs vary in where and when they show skill. The choice of whether to use a 
numerical or statistical model for seasonal prediction ultimately depends on the focus and 
resources of the forecast producer(s) and users. There are advantages to using both approaches in 
parallel. 
 
3.3. Estimating forecast uncertainty 
 

Due to the chaotic nature of the atmosphere, it is impossible to know exactly how the 
atmosphere will evolve beyond a few days. Thus, medium and long-range weather forecasts and 
seasonal climate forecasts usually are presented in probabilistic terms (Murphy, 1990; Tracton 
and Kalnay, 1993; Déqué et al., 1994; Palmer and Anderson, 1994; Barnett, 1995; Dix and Hunt, 
1995; Harrison, 1995; Anderson, 1996; Molteni et al., 1996; Sivillo and Toth, 1997; Sivillo et 
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al., 1997; Murphy, 1998; Stockdale et al., 1998b; Mason et al., 1999). Forecast uncertainty 
derives not only from model weaknesses, but also from the inherent unpredictability of the 
precise state of the atmosphere. Even with a perfect model, atmospheric internal variability 
would still impose finite uncertainty on the most likely climate outcome. Probabilistic 
forecasting provides a means of addressing both sources of forecast uncertainty by indicating the 
probability distribution of expected possible outcomes (Kumar et al., 2000a). Statistical and 
dynamical methods have been developed for estimating the probability distribution function 
(PDF) for climate outcomes for a coming season. 

A climatological PDF of seasonal precipitation, for example, indicates the relative frequency 
with which accumulated precipitation of differing amounts were observed for that season over a 
historical period. In the case of forecasts of seasonal precipitation, a PDF indicates the 
probability with which different accumulated totals are estimated to occur. Simple statistical 
approaches to estimating the seasonal PDF for a region are based on conditional probabilities 
indicating the relative frequency with which a particular climate outcome was observed under 
certain boundary forcing, such as, El Niño or La Niña conditions (Mason and Goddard, 2000). 
Shown in Figure 2 are observed PDFs conditioned on ENSO phase for several regions with 
documented ENSO teleconnections (Ropelewski and Halpert, 1987). The gray shaded areas 
represent the neutral distribution, which is defined as the distribution of rainfall anomalies that 
occurred when the tropical Pacific SSTs were close to normal. The solid and dashed lines 
indicate the distributions of rainfall anomalies during El Niño and La Niña conditions, 
respectively. For most of the regions presented in Figure 2, the distributions during ENSO events 
are shifted positively or negatively relative to the neutral distribution. In some cases, such as 
central eastern Africa (Figure 2e) La Niña forcing does not lead to a shift in the PDF relative to 
neutral ENSO conditions, but El Niño conditions greatly enhances the probabilities for above-
average rainfall, even though below-average rainfall occurred during several El Niño events. 
Over India, the rainfall distribution during El Niño events does not seem that different from the 
distribution during normal years; however, the driest years in the record were observed to occur 
during El Niño events. The PDFs shown in Figure 2 illustrate that during years of anomalous 
boundary condition forcing, such as El Niño and La Niña events, both the mean and the spread 
of the distribution may change relative to the neutral distribution. Furthermore, the alterations to 
the distributions are not necessarily linearly affected by the boundary forcing (Hoerling et al., 
1997). If it is assumed that these statistics are minimally affected by lower frequency variability, 
then the observed conditional probabilities, such as those shown in Figure 2, may be used in 
predictions of the future. The main problem with this approach, besides the assumption of 
climate stationarity, is that each El Niño and La Niña event is unique in amplitude, spatial 
structure, and evolution, all of which may lead to uniqueness in the associated climate response. 

More sophisticated statistical methods of defining forecast probabilities have been 
implemented (Ward and Folland 1991; Casey 1995; Carter and Elsner 1997; Lehmiller et al., 
1997; Mason 1998; Mattes and Mason 1998; Mutai et al., 1998; Mason and Mimmack 2000), but 
generally maintain the assumption of climate stationarity. Regression-based forecasting 
approaches can provide confidence intervals (Wilks, 1995), but these, while being indications of 
average model uncertainty, are poorly related to the inherent unpredictability of a particular 
forecast period. 

Dynamical approaches use an ensemble of GCM predictions to sample the seasonal PDF 
(Murphy, 1990; Tracton and Kalnay, 1993; Brankovic et al., 1994; Déqué et al., 1994; Palmer 
and Anderson, 1994; Barnett, 1995; Dix and Hunt, 1995; Harrison, 1995; Anderson, 1996; 
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Molteni et al., 1996; Brankovic and Palmer, 1997; Sivillo and Toth, 1997; Sivillo et al., 1997; 
Murphy, 1998; Stockdale et al., 1998b; Mason et al., 1999). It is known, however, that GCMs  
have varying degrees of systematic biases in the pattern, amplitude, and variance of their climate 
variability (Smith and Livezey, 1999; Anderson, 1996). Furthermore, the effect of climate 
uncertainties introduced by uncertainties in the evolution of the boundary conditions (Barnett, 
1995) are rarely quantified in the predicted PDFs. Recalibration of forecast probabilities 
therefore is required. 
 
3.4. Forecast reliability and recalibration 
 

Because there is no guarantee that an ensemble distribution of possible outcomes will 
provide a reliable indication of forecast uncertainty, an important aspect of forecast skill is the 
reliability or calibration of forecast probabilities (Murphy and Winkler, 1987; Murphy 1993, 1997; 
Wilks 1995). The frequency of particular observed outcomes should match the relative frequency 
with which they are predicted. However, the fact that a forecast is ultimately matched against a 
single realization of nature introduces conceptual difficulties in verifying individual probabilistic 
forecasts. Probably the only fair assessment of probabilistic forecasts is to judge whether the 
forecaster is systematically over- or under-confident over a period of time by comparing the 
frequency of an outcome relative to the confidence of the forecast probabilities (Wilks, 1995, 
2000; Murphy, 1997). In a reliable forecast system, the observations should fall between the 
25%-ile and 75%-ile bounds of the forecast PDF 50% of the time, for example. Reliability and 
attributes diagrams (Hsu and Murphy, 1986; Wilks, 1995; Hamill, 1997) provide useful 
indications of the reliability of forecast probabilities, and can be supported by scores obtained 
from a decomposition of the half-Brier score (Brier, 1950; Murphy, 1973; Wilks, 1995). The area 
under a relative operating characteristics (ROC) curve is becoming a common indicator of 
forecast quality (Swets 1973; Mason, 1982; Harvey et al., 1992). However, it should be 
emphasized that the ROC area can be maximized without requiring the forecast probabilities to 
be perfectly reliable (Mason and Graham, 1999). Thus, the ROC area does not penalize if the 
forecast probabilities are systematically over- or under-confident, and this does not encompass 
all aspects of forecast quality. 

Reliability of forecast probabilities can be achieved by issuing perpetual forecasts of the 
climatological probability of an event, and so reliability is a necessary, but not sufficient aspect 
of forecast skill. Other commonly used verification measures account for the importance of 
sharpness by penalizing forecasts that do not deviate from the climatological probability 
(Murphy, 1993, 1997; Wilks, 1995). For example, the RPSS (Ranked Probability Skill Score) 
(Epstein, 1969; Murphy, 1971; Wilks, 1995) and LEPSPROB (probabilistic version of the linear 
error in probability space score) (Ward and Folland, 1991; Potts et al., 1996) reach their highest 
values when the climate variability is correctly predicted with high probabilities.  

Proper assessment of the reliability of a prediction tool can reveal biases in the tool's 
representation of the forecast probabilities. Methods such as the binned probability ensemble 
technique (Anderson, 1996; Hamill and Collucci, 1998) can indicate errors in the spread of an 
ensemble, but such methods do not indicate errors in the central tendency of the predicted PDF 
that may depend on the magnitude of the predicted climate anomaly (Mason et al., 2000) (Figure 
6). Once model biases are identified, the forecast can be recalibrated such that the predicted PDF 
is more representative of the true uncertainty in the seasonal climate-state being forecast, and the 
errors of the forecast tool are minimized. 
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Figure 6. Conditional errors in the simulation of area-averaged September – November 
2m air temperature over eastern Africa (10°N-10°S, 30°-50°E), 1950 – 1994. The thick 
solid line shows the cumulative distribution of observed standardized temperatures, while 
the thin solid line indicates the conditional exceedence probabilities (CEPs), showing 
how the probability that the ECHAM3.6 ensemble-mean simulation of air temperature 
exceeded the observed temperature varies as a function of the ensemble-mean 
temperature. In a model that simulates the central tendency of the seasonal PDF perfectly, 
the CEP should be independent of the ensemble-mean temperature (dashed horizontal 
line). In a model with no skill, the CEP will be equal to the climatological probability 
(dotted line). The CEPs can be defined using generalized linear regression (Mason et al., 
2000). 

 
 
Forecast probabilities of seasonal climate anomalies, including those from statistical models 

(Mason and Mimmack, 2000), appear to be less reliable than for short- and medium-term 
weather forecasts (Wilks, 2000a). The short history for which seasonal forecasts are available is 
an important reason for the lack of research into their reliability. Most measures of reliability, 
such as the Murphy (1973) decomposition of the half-Brier score and reliability and attributes 
diagrams (Hsu and Murphy 1986; Wilks 1995; Hamill, 2000), require a long history of forecasts 
to ensure that the conditional relative frequencies of an event can be estimated with minimal 
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sampling error for each forecast probability bin (Wilks 1995). However, methods are being 
developed to indicate reliability from shorter histories of forecasts (Mason et al., 2000). 

Some forecast recalibration methods can also be used to obtain a more complete description 
of the entire PDF (Wilks and Eggleston, 1992; Briggs and Wilks, 1996; Mason and Graham, 
1999; Wilks, 2000b). Typically, most seasonal forecasts are expressed in terms of probabilities 
of positive or negative anomalies of seasonally averaged conditions, or in terms of tercile 
probabilities (Mason et al., 1999), but statistical methods can be used to estimate additional 
forecast detail. The lack of a sufficient history of forecasts precludes a more detailed description 
of the PDF with any confidence. Since most user requirements are for more detailed information, 
methods for increasing the information content of seasonal climate forecasts promise to be 
important research foci in the future. 
 
3.5 Combining predictions 
 

That the combination of predictions from different models can result in improvements in 
forecast skill has been long recognized in the weather forecasting field (Thompson 1976; Clemen 
and Murphy, 1986; Clemen and Winkler, 1987; Fraedrich and Leslie, 1987). The combination of 
forecasts has also been a topic of lively debate in economics (Clemen, 1989; Granger, 1989; 
Winkler, 1989). Objective forecast combination schemes have been applied to seasonal climate 
forecasts only recently (Fraedrich and Smith 1989; Casey, 1995; Krishnamurti et al., 1999, 
Graham et al., 2000). Reductions in forecast error have been demonstrated by combining 
weighted model predictions on the basis of previous model performance. The weighted 
combinations typically outperform simple averages of model predictions since greater weight is 
given to models with better historical performance. However, even though such methods of 
forecast combination will result in a decrease in mean squared-errors, they can weaken other 
skill measures and often reduce the information from the predicted PDFs (Zhang and Casey, 
2000). More comprehensive validation is required to ensure improvements in forecast quality 
and value. A very straightforward approach to combining predictions from different tools that 
retains characteristics of the predicted PDF and retains skill is through pooling ensembles from 
different models. The skill of the pooled super-ensemble is not measurably higher or lower than 
that of the best tool included (Figure 7). The advantage gained by creating a super-ensemble in 
this way is that higher skill can be obtained for larger regions, because the best tool will vary 
with season and region. However, equal weighting of forecasts from models with both good and 
poor skill leads to a loss of sharpness, or refinement, and impacts on reliability will need to be 
considered carefully. Forecast combination constitutes an important direction for future research 
(Epstein, 1988), but needs to draw on experience from other applications. 

Subjective forecast combination has become an important area of development with the 
advent of the regional forecast fora (e.g. Drought Monitoring Centre, 1998), and is used in the 
construction of the IRI “net assessments” (Mason et al., 1999), and the NCEP seasonal forecasts 
(van den Dool et al., 1998). The subjective process of blending forecasts for adjacent areas and 
of combining different forecasts for the same regions is known as “consensus forecasting”. 
Although the subjective process in theory could be improved upon by implementing some 
objective combination techniques, the consensus forecasting approach has some practical value 
in that it permits a simple combination of all available forecasts when full or compatible 
verification data are unavailable. The risk is that forecasts with minimal or no skill can affect the 
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consensus adversely, but the approach is supportable on the basis that a simple averaging of 
forecasts is often an improvement on any one forecast product. 

 
 

 
 

Figure 7.  R.O.C. scores (area under relative operating charactistics curve) for below-
normal 850 hPa temperature. R.O.C. scores for above-normal temperature are identical. 
Results are from all four participating PROVOST models (hatched bars) and the 
multiple-model configurations: JT2, JT3, JT4 (solid bars). UM = UKMO Unified Model; 
T63 = ECMWF T63 model; AP1 = Météo France ARPÈGE T42 L31 model; AP2 = the 
ARPÈGE T63 L31 (run at Electricite de France (EDF) - DJF season only); JT2 = 
UM+T63 (18 members); JT3 = UM+T63+AP1 (27 members); JT4 = 
UM+T63+AP1+AP2 (36 members, DJF only). (from Graham et al., 2000) 
 
 

3.6. Examples from 1997-98 
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The exceptional El Niño event of 1997-98 provided an excellent test bed for climate 
prediction tools and many successes were advertised (Shukla, 1998). The evolution of tropical 
Pacific SST anomalies associated with the 1997-98 El Niño event were well forecast by both 
numerical and statistical means (Barnston et al., 1999), but the timing of the initial onset was not 
well predicted by any of the tools (Landsea and Knaff, 2000). 

At its peak, the 1997-98 warm event exhibited a magnitude and spatial structure very similar 
to the 1982-83 El Niño event (Figure 8); these two El Niños are the strongest warm episodes 
experienced in the 20th century. Overall, the SSTs throughout the tropics were warmer during 
1997-98 than during 1982-83. The northern tropical Atlantic warmed in response to El Niño in 
the tropical Pacific, as often happens (Enfield and Mayer, 1997), and the southern tropical 
Atlantic, which has little relation to the variability in the Pacific, was also over 1°C warmer than 
usual. By the end of 1997 the response of the atmospheric circulation over the Indian Ocean 
region was so strong that the local air-sea system actually developed La Niña-like conditions 
through coupled instability (Chambers et al., 1999; Webster et al., 1999). This feature appeared 
as a cold tongue in the eastern Indian Ocean accompanied by warm anomalies in the 
central/western Indian Ocean. As a result, considerable debate arose over whether coupled 
instability is a primary or anomalous mechanism for the warming of the central and western 
tropical Indian Ocean typical during El Niño events (Saji et al., 1999; Reason et al., 2000). The 
magnitude of the warming in the Indian Ocean was atypical and was not captured by statistical 
predictions. 
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Figure 8. Sea surface temperature anomalies from NOAA's Climate Prediction Center 
(Reynolds and Smith, 1994) at the peak of the two strongest El Niño events of the 20th 
century: (a) December 1982, and (b) December 1997. Units are degrees C. Light shading 
(values less than -0.5C) and dashed contours (1C interval) indicate negative anomalies, 
and darker shading (values greater than 0.5C) and solid contours (1C interval) indicate 
positive anomalies. 
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Although the strong SST forcing of El Niño resulted in climate anomalies in many areas that 

could have been predicted using simple linear statistics, a few regions with robust climate 
associations to El Niño, did not experience the expected anomalies during the 1997-98 event. 
Such examples invite investigation into whether differences between the deterministic prediction 
and the observed outcome are due to inherent uncertainty represented in the seasonal PDF, or are 
due to errors or omissions in the modeled climate. Queensland, Australia is a prime example of 
such climate surprises observed during the 1997-98 El Niño event (Goddard et al., 1998). During 
El Niño this region typically experiences lower seasonal totals over their rainy season (October-
February). Based on the conditional probabilities of observed rainfall during the 20 warmest 
October-November-December (OND) values of the NINO3 index from 1890-1989, the OND 
season has seen rainfall in the upper tercile (> 67%-ile) of the climatological PDF during only 
one El Niño case (Figure 2d). The observations for OND 1997 (Figure 9) clearly indicate well-
above average rainfall over parts of Queensland, although the apparent extent of the coverage is 
highly dependant on the resolution of the observations. Statistical deterministic rainfall 
predictions for this area failed. 
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Figure 9. Observed rainfall anomalies over Australia for the October-November- 
December 1997 season. Units are percent of average for the OND season, based on 1961-
1990 climatology. Very light shading (starting at 75%-average) and dashed contours 
(25%- and 50%-average) indicate less than average rainfall. Darker shading (starting at 
125%-average, with very dark shading for rainfall anomalies greater than 200%-average) 
and solid contours (150%-, 200%-, and 300%-average) indicate above average rainfall. 
Data provided by Queensland Department of Natural Resources at 25km gridded 
resolution. 

 
 
Dynamical deterministic predictions for Queensland did not perform any better. The question 

pondered is whether dynamical probabilistic predictions were accurate as it is impossible to 
assess probabilistic forecasts for an individual season. Several of the models used by the 
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International Research Institute (IRI) have statistically significant ensemble-averaged skill in 
simulating rainfall variability in this region for the OND season, but these models were not 
suggesting above-normal rainfall for OND 1997. 

These AGCMs were unanimously indicating high probabilities of below-normal rainfall over 
Queensland under a selection of SST scenarios. Even when forced with observed SSTs for the 
period, high probabilities of widespread below-normal rainfall are simulated. In the previous one 
occasion on record that above-normal rainfall had been experienced during an El Niño event in 
the region, similar sea-surface temperature anomalies had occurred off the eastern coast of 
Australia, but again the models continued to simulate below-normal rainfall. Possibly with 
improved models it may be possible to generate more accurate ensemble forecasts under such 
conditions, but the possibility that the observed rainfall was simply an unlikely event cannot be 
ruled out. 
 
 
3.7. Future directions 
 
3.7.1. Improved GCM physics and parameterizations. 
 

Current predictions are limited by very obvious systematic errors in atmosphere, ocean and 
land models, and especially coupled models. These errors result in incorrect model climatologies 
and “climate drift”, which compromise forecasts at even modest lead-times of a few months. 
Diagnosing and rectifying errors in such complex models is extremely difficult, as many of the 
processes interact strongly, and can mask the true source of error. Still, it is possible to identify a 
number of important common problems with current models. For the atmosphere, 
parameterizations of convective and marine stratus clouds are extremely important and are in 
need of improvement. Likewise, improvements are necessary for boundary layer 
parameterizations, which control fluxes that govern coupling with the land surface and oceans. 
For the oceans, a primary concern is correctly parameterizing mixing processes in the surface 
layers, and more generally above the main thermocline. Arriving at more general mixing 
schemes that can cope with the wide range of conditions encountered in the equatorial and higher 
latitude oceans is a key problem of relevance to seasonal prediction. 
 
3.7.2 Data assimilation.  
 

In every dynamical forecast system it is necessary to initialize the ocean and atmosphere 
components. The methods used for initialization may be at least as important a limitation on 
current forecasts as model flaws (Chen et al., 1995, 1998; Behringer et al., 1998). The primary 
problem lies in the ocean, because the ocean contains the primary “memory” for time scales 
longer than a few weeks, and the observations are much more limited for the ocean, in most 
regions. The schemes that are currently used at operational centers involve optimum 
interpolation or 3-dimensional variational methods (Smith et al., 1991; Ji et al., 1995; Derber and 
Rosati, 1989), which are quite simple methods, typical of those used for atmospheric assimilation 
more than a decade ago. More sophisticated methods have been introduced, involving Kalman 
filter and adjoint approaches (e.g., Cane et al., 1996; Bennett et al., 1998), but are still 
experimental. At present, only thermal data is assimilated in ocean models used for prediction. 
Experiments have been done with altimeter data (Ji et al., 2000; Segschneider et al., 1999), and 
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efforts are underway to include such data in prediction systems in the near future. Much more 
work is needed, not only in developing methodologies, but also in applying additional data 
sources that are presently available, such as satellite scatterometry. A major advancement now 
being proposed is in situ monitoring of upper-ocean temperature and salinity via programmable 
buoys. This or other enhanced real-time monitoring of the upper ocean is of fundamental 
importance to improving predictions, especially outside the tropical Pacific. 
 
3.7.3 Increased spatial and temporal resolution 
 

As the use of climate predictions increases, the demand for more detailed information also 
increases. Very localized predictions, often made using statistical tools, can be tailored to any 
spatial and temporal resolution desired. Dynamical predictions on regional and global scales, 
however, typically provide seasonally averaged climate at spatial scales on the order of hundreds 
of kilometers. In fact the GCMs run operationally by most centers use an effective grid 
resolution of approximately 2 x 2 degrees (approximately 200 kilometer grid spacing). A few 
approaches to gaining spatial and temporal resolution exist. One may increase the resolution of 
the global model, or if a specific region is of concern, one may choose a method of statistical or 
dynamical downscaling. Spatial downscaling may also have the added benefit of improving 
temporal information, such as the daily statistics of the weather within the seasonal climate. 
Rainfall in GCMs is generally considered to represent an average quantity over the grid box 
(Osborn and Hulme, 1998). As a result, GCMs generally overestimate the daily rainfall 
frequency and underestimate the rainfall variance relative to point observations. 

Denser grid spacing in dynamical models obviously improves the resolution of the terrain, 
which can influence the large scale atmospheric circulation and also local orographically forced 
precipitation. For example, Figure 10 shows the climatology of precipitation over the United 
States for observations at 0.5 degree resolution (New et al., 1999) compared to that from an 
AGCM run at T42 spectral truncation (approximately 2.8 degrees resolution) and at T106 
(approximately 1.2 degrees resolution). Not only are orographically related features improved 
such as the separation in rainfall maxima over the Sierra and northern Rocky mountains, but also 
features related to the strength and placement of the large scale flow are improved, such as the 
local rainfall maximum in the southeast. Certain gains of higher resolution global models are 
obvious, but they come at a price: the amount of computer time needed to run a model at high 
resolution, and the amount of storage space needed to archive the results are enormous. 
Furthermore, increasing the resolution of an AGCM is not trivial. Because the sub-grid scale 
parameterizations, such as convection, may be not be optimized for the higher resolution version, 
the results may actually be worse in some places (Boyle, 1992). 
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Figure 10. (a) Observed precipitation from University of East Anglia (New et al., 1999) 
at 0.5 degrees resolution; (b) AGCM simulated precipitation from model run at 
approximately 2.8 degrees resolution (T42); and, (c) AGCM simulated precipitation from 
model run at approximately 1.1 degrees resolution (T106). Units are mm/day. Shading 
contours at 0.25, 0.5, then every 1.0 over 1.0 mm.day, superimposed are contour lines at 
2.0 intervals over starting at 2.0 mm/day. 

 
 
Alternatively, if increased resolution is required only over a specific area, one may nest a 

higher resolution limited area regional model within the global GCM. The regional model is 
driven by the time-dependant large-scale fields that are produced by the GCM. Inside the 
regional model domain, the terrain is better resolved and the physical equations are integrated on 
the higher resolution grid. The GCM drives the regional model by flow through the lateral 
boundaries (Giorgi et al., 1993) or by specifying the large scale flow structure throughout the 
domain which is then refined by the regional model (Juang and Kanamitsu, 1994). The most 
common problems with nested models are boundary effects resulting from the abrupt change in 
spatial scale and parameterizations that are not tuned for the region or high spatial resolution of 
the limited area model. Of course propagation of errors is also a concern, as the regional model 
will add detail and possibly even amplitude to errors in the large-scale circulation coming from 
the GCM. Assessment of gains from this approach is judged over multi-year, preferably 
ensemble, integrations of the regional model forced by the global model. When this approach 
succeeds, great improvements can be achieved not only in the details of the surface climate, but 
in spatial coverage of simulation skill and its level of statistical significance (Sun and Graham, 
2000). 

Using a regional model for prediction has yet another level of issues to consider. One must 
still have a multi-year integration so that anomalous behavior can be properly recognized relative 
to the model's time-averaged behavior. One must also consider how to treat the problem 
probabilistically. If the predictions are meant to refine potential climate scenarios, how should 
the ensemble member(s) from the global model be chosen? Should the treatment of the highly 
detailed prediction ensemble differ from that of the global prediction ensemble, because the 
downscaling process may produce locally stronger signals leading to locally larger uncertainty 
over the ensemble. The main scientific argument against dynamical downscaling using nested 
models is the physical inconsistencies introduced by the one-way flow of information from the 
global model to the regional model. There also exist global GCMs that have been designed with 
stretched or telescoping grids, which gradually increase resolution over the area of interest, 
avoiding the boundary problems and the inconsistent information flow problems possible in 
nesting experiments (Fox-Rabinovitz et al., 1997). The other issues of assessment and prediction 
are not avoided. The main practical argument against dynamical downscaling is the expense of 
computer time needed to run the historical simulations and predictions and the amount of storage 
space needed to archive the output. Again, the existence of a good observational network is 
crucial for validating the data from high resolution models. Especially for validation of higher 
order statistics of seasonal climate, such as characteristics of the daily rainfall, the observations 
must be available at a scale comparable to that of the model. 

Several less complex and less costly approaches exist that currently may give comparable or 
even better results than dynamical downscaling for some cases. The simplest is statistical 
downscaling, in which local patterns of climate and the associated weather statistics are 
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conditioned on some larger mode of the climate, such as ENSO, or more generally recent 
observations of global SSTs and/or atmospheric circulation. The larger scale SST or atmosphere 
patterns are often filtered to a lower dimensional space using empirical orthogonal functions 
(EOFs), for example, to focus on the dominant patterns of the variability. The main caveat in 
using statistical downscaling, as with any purely empirical method, is that the past climate on 
which the tool is based may not be representative of future variability. 

A compromise exists between the empirical approach and the dynamical approach. Hybrid 
downscaling follows a similar methodology to statistical downscaling, but the downscaled 
climate is conditioned on the SST or atmospheric circulation prediction from a dynamical model 
for the same season, as opposed to the previous season's observations. A review comparing 
various statistical downscaling methods applied to GCM output can be found in Wilby and 
Wigley (1997). For some applications and in some regions hybrid downscaling may show 
marked improvement over purely statistical downscaling and may be comparable to dynamical 
methods (Gershunov et al., 2000). A dense network of observations is assumed in the statistical 
and hybrid approaches since these tools could not be constructed without them. 
 
 

4. APPLICATION OF CLIMATE PREDICTIONS 
 
4.1 Rationale, impediments, approaches 

The primary motivation for public support of climate prediction science is the desire to 
reduce the enormous socio-economic costs of climate fluctuations, especially of the major 
floods and droughts to which less developed countries are so vulnerable (Glantz et al., 1991; 
NOAA, 1994; Glantz, 1996; Moura and Sarachik, 1997; Stern and Easterling, 1999; WMO, 
1999; Agrawala et al., 2000). However, the presence of a skillful forecast product does not 
guarantee that benefits will accrue; these can only be realized through the parallel development 
of application science and the ongoing institutionalization of the lessons learned. This short 
section rounds out the paper’s discussion of climate prediction science with a brief introduction 
for climate scientists to the issues involved in the application of climate predictions. 

An application of climate prediction information may be defined as a conscious effort to use 
that information in decision making, in the expectation of benefits such as reduced risk, reduced 
costs, or increased production or profits. Decisions can range from simple choices about the 
priorities for a farmer’s workday to million-dollar decisions about seasonal operating strategy 
for a hydro-electricity reservoir. Intrinsic to the decision process is a system that is sensitive to 
climate, a model of that system in the mind or computer of the user, and a range of decision 
options. The wide public interest in the El Niño implies that myriad day to day decisions are 
influenced by seasonal climate outlooks, but beyond this, progress in the systematic application 
of climate forecasts has been rather slow, being mainly limited to specific research-based 
projects in areas having very strong ENSO signals (Hammer et al., 2000).  

Impediments to the application of climate forecasts arise from several causes. First, the 
climate exhibits only limited predictability and skillful forecasts are available only for some 
seasons and regions (as discussed in Section 3.2)—unlike the case of weather forecasts, where 
useable forecasts are available for all times of the year and all regions of the world. Climate 
forecasters do not always make the predictability limitations transparent or provide adequate 
useable guidance on the accuracy of the forecasts. Second, the uncertainty and probabilistic 
nature of climate forecast information is often difficult for the user to understand and to 
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incorporate into their decision processes. Probabilistic forecasts are too often wrongly 
communicated or interpreted as deterministic forecasts, and the simplistic use of such 
deterministic forecasts may neglect the chance of costly failures. For other users the risk of such 
failures may negate the potential long-run value of the probabilistic forecasts. Third, current 
forecast products generally lack the spatial, temporal and element specificity that users seek for 
their specific decision making needs—forecast are generally made for 3-month seasons, large 
regions over 1000 km in width, and mean temperature and rainfall totals only. Fourth, users may 
not have sufficient understanding of their system or acceptable options for using a skillful 
forecast. Fifth, the huge diversity of user circumstances, and the lack of familiarity of the 
producer and the user with the basic knowledge and language of each other’s world compound 
the above difficulties. Because there is a cost to learning and communication, the investment by 
the user may exceed the potential benefits to them of the forecast information.  

Additionally, the application of climate prediction information necessarily spans a range of 
disciplines in the climatic, biophysical/ecological and socio-economic fields, and usually will 
need to be well grounded in a knowledge of the situation of a particular region, country, sector 
and user group. The goal of developing applications thus involves considerable complexity. At 
the most quantitative, technically sophisticated extreme, there are simulation models or decision 
support systems that can be driven by observed or model simulated historical data and to 
retrospectively explore and test complex decision options. Farm system models that incorporate 
details of soils, crops and management options are a particular focus for such applications 
research (Messina et al, 1999; Hammer, 2000; Jones et al., 2000). In public health, models of 
disease vectors are being studied (Linthicum et al., 1999, Bouma et al., 1997), while in water 
resources, reservoir management is a focus (Georgakakos et al., 1997; 1998.) A major issue in 
this research is how to downscale the spatially and temporally coarse output of global climate 
prediction models to meet the needs of crop models, which focus on specific fields or districts 
and are driven by daily weather data (Hansen, 2000). Generally, decision support systems 
studies have concentrated on the biophysical and economic parts of the spectrum, with little 
work on social systems modeling.   

The application of climate forecasts has been explored largely by top-down approaches, by 
seeking uses for existing forecast information, and less commonly by a bottom-up approach, by 
examining a decision situation to identify niches and needs for climate forecasts (Stern and 
Easterling, 1999). It is also possible to take an "end-to-end” approach (NOAA, 1994), which 
emphasizes that the effective application of climate predictions requires consideration of the full 
span of factors and their interactions, including social behavior, institutional constraints, sector 
system models (e.g. crop-climate models), the design and communication of forecast products, 
the choice of prediction models, and the adequacy of observational data (fig. 11). The end-to-
end approach applies to both the research stage and to the operational stage. Both cases require 
transdisciplinary collaboration and close interaction between users, producers, their 
intermediaries, and the applications scientists. 
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Figure 11. Schematic representation of the end-to-end concept, which indicates that 
desired outcomes require attention to all processes throughout the chain – physical, 
biological, socio-economic. An application involves a complex web of interactions, 
transformations and multiple feedbacks along the whole chain. 
 

 
4.2 The user and societal perspective 

If societal benefit is the goal of climate prediction then it is clear that a strong orientation 
toward users, the decision-making process, and the social setting is required in applications 
research. There is a wealth of related information in the fields of development studies, global 
change, technology transfer, and weather forecast application upon which to draw. Furthermore, 
experience with users forms a critical basis for guiding the priorities for prediction research, as 
well as justifying the funding for such research. As an example, user demand for predictions of 
extreme seasonal rainfall has led to the development of an 85%ile rainfall forecast at the IRI 
(Mason et al., 1999). 

Whether or not a formal quantified decision model exists, there will always be some 
qualitative mental model in the mind of the user, based on custom, direct experience and 
hearsay. These may incorporate traditional or evolving coping strategies, for example water 
harvesting and storage practices, and diversification of crop types. Such mental models filter the 
incoming information and shape the interpretation and hence degree of effectiveness of forecast 
use, depending on the source, form, mode and language of the communication. Typically, 
people want a forecast to be set in a context of their past and recent experience, for example by 
comparing with the previous year's situation, or with a particular extreme event. Such mental 
analogues are valuable because they contain a vast richness of information on the behavior of 
the whole system with which the user is concerned (e.g. for a farmer this might include patterns 
of weeds, pests, animal health, harvesting problems, produce quality and prices, damage to farm 
roads, debt status, credit availability, community confidence, government policy shift, etc.) 
However, from the climate perspective, individual analogues can be misleading, as the climate 
outcome in any particular year is only one realization (possibly even an unlikely one) from a 
distribution of possibilities.  

Usually a user will face a cascade of multiple decision possibilities, some being of the “no 
regret” type, such as advancing the maintenance of machinery, where the cost of the marginal 
action and the potential for losses are small, and some involving very high costs, or the potential 
for intolerable losses, such as bankruptcy or the total loss of the family’s animal herd. In 
principle, a decision situation can be described by utility or cost-loss functions for the 
distribution of possible decisions and outcomes. In the simple binary case (event occurring or 
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not, event forecast or not), a 2x2 matrix can be used to represent net economic consequences of 
a single decision, as well as its component costs and gains (see Katz and Murphy, 1997). This 
approach can be useful to help users conceptualize and assess the potential consequences of 
decisions, such as the trade-offs between long-term average gains versus short-term risks, 
though ordinarily the user will have more that just two options to consider and accurate cost/loss 
data will not be available. It should also be recognized that users face a multiplicity of decisions 
and that relative to the effects of prices, social or political expectation, imposed regulations, etc, 
a forecast of the season’s climate may form only a minor component of most decisions. For 
these and other reasons, even a technically skillful forecast is not necessarily a useful forecast 
for the decision maker.  

The design and communication of prediction information to users is an active subject of 
research. Typically the forecast information is communicated to the end-user or decision makers 
by an intermediary such as a journalist, agricultural extension worker, government officer, or 
climate consultant, and end-users are likely to have more than just one source of information, 
including web sites, advisors, the media, acquaintances and community leaders. There are often 
several steps in the information wholesaling process, in which each intermediary interprets and 
transforms the information to suit the intended recipient, possibly with the aid of a system 
model. Dissemination by rural radio and the use of local languages is being explored in parts of 
Africa (J. Phillips, N. Ward, pers. comm.) The media is a valuable channel for timely broadcast 
of basic information, but it may distort the message to make it simpler or more sensational or 
due to lack of expertise (Nicholls and Kestin, 1998.) Institutions may be externally constrained, 
structurally unable or unwilling to hear, learn or apply new climate prediction methods (Rayner 
et al., 2000). 

The justification of an application ultimately lies in the benefits it generates. Public 
expenditures on climate prediction research and operational forecasting are rightly argued for on 
the grounds of the potential benefits but as yet there is relatively little detailed understanding 
and quantification of these benefits and how they might be distributed in the community. In less 
developed tropical countries that are particularly vulnerable to climatic stresses, the primary 
benefits being sought are those of increased resilience of livelihoods and of land use—such 
things are difficult to measure even over long periods. Some studies in developed countries have 
reported good benefit/cost ratios at a macroeconomic level though many assumptions are 
involved (Katz and Murphy, 1997; Solow et al., 1998). There will be winners and losers. For 
example, any increased agricultural production resulting from widespread use of climate 
prediction-based farming strategies will act to drive down prices bringing benefits to consumers 
but not necessarily to farmers (Mjelde et al., 1998; Mjelde et al, in press). A study of the use of 
climate information by the main actors in Peru’s fisheries (artisanal fishers, factory fishing 
companies, company labor, and fisheries conservators/regulators) showed that the design of 
forecast products and dissemination strategy plays an important role in determining the actors’ 
options for action and the participation by actors and others in the resulting benefits and 
detriments (Pfaff et al., 1999; Broad et al., in press).  

 
4.3 Demonstration and implementation 

Finally, in order to achieve lasting benefits of climate prediction information, it is necessary 
for applications researchers to go beyond basic research, to progressively undertake pilot and 
demonstration projects and associated capacity building for the people and institutions expected 
to carry out the applications in individual countries (NOAA, 1999). It is also necessary for the 
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climate operations community to provide an operational infrastructure that fosters the generation 
and exchange of appropriate climate data and forecast products between countries, together with 
initiatives to enhance the user-producer interface. These implementation activities are an integral 
part of the end-to-end concept.  
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