161 research outputs found

    Comparison of heat-shock responses between the hydrothermal vent shrimp Rimicaris exoculata and the related coastal shrimp Palaemonetes varians

    No full text
    The deep-sea vent shrimp Rimicaris exoculata is believed to occur at the hot end of the hydrothermal biotope in order to provide essential elements to its epibiosis. Because it is found close to hot venting water, R. exoculata lives in a highly fluctuating environment where temperature (2–40 °C in the swarms) can exceed its critical maximal temperature (33–38.5 ± 2 °C). In order to understand how this vent shrimp copes with hyperthermia, we compared its molecular heat stress response following an acute but non-lethal heat-shock (1 h at 30 °C) with that of its monophyletic shallow-water relative, the shrimp Palaemonetes varians, known to frequently undergo prolonged exposure at temperatures up to 30 °C in its natural environment during summer. We isolated four isoforms of heat-shock proteins 70 (HSP70) in R. exoculata (2 constitutive and 2 inducible isoforms) and two isoforms in P. varians (1 constitutive and 1 inducible isoform) and quantitatively compared their magnitude of induction at mRNA level, using real-time PCR, in the case of experimentally heat-stressed shrimps, with respect to control (unstressed) animals. Here, we report the first quantification of the expression of multiple hsp70 genes following heat stress in a deep-sea vent species living at 2300 m depth. Our results show a strong increase of hsp70 inducible genes in the vent shrimp (not, vert, similar 400-fold) compared to the coastal shrimp (not, vert, similar 15-fold). We therefore propose that, the highly inducible molecular response observed in R. exoculata may contribute to the ability of this species to tolerate thermal extremes

    A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral response dynamics to pheromone in Drosophila

    Get PDF
    Conclusions: Our study presents evidence that Est-6 plays a role in the physiological and behavioral dynamics of sex pheromone response in Drosophila males and supports a role of Est-6 as an odorant-degrading enzyme (ODE) in male antennae. Our results also expand the role of Est-6 in Drosophila biology, from reproduction to olfaction, and highlight the role of ODEs in insect olfaction

    Degradation of Pheromone and Plant Volatile Components by a Same Odorant-Degrading Enzyme in the Cotton Leafworm, Spodoptera littoralis

    Get PDF
    Background: Odorant-Degrading Enzymes (ODEs) are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly removing odorant molecules from the vicinity of the olfactory receptors. Only three ODEs have been both identified at the molecular level and functionally characterized: two were specialized in the degradation of pheromone compounds and the last one was shown to degrade a plant odorant. Methodology: Previous work has shown that the antennae of the cotton leafworm Spodoptera littoralis , a worldwide pest of agricultural crops, express numerous candidate ODEs. We focused on an esterase overexpressed in males antennae, namely SlCXE7. We studied its expression patterns and tested its catalytic properties towards three odorants, i.e. the two female sex pheromone components and a green leaf volatile emitted by host plants. Conclusion: SlCXE7 expression was concomitant during development with male responsiveness to odorants and during adult scotophase with the period of male most active sexual behaviour. Furthermore, SlCXE7 transcription could be induced by male exposure to the main pheromone component, suggesting a role of Pheromone-Degrading Enzyme. Interestingly, recombinant SlCXE7 was able to efficiently hydrolyze the pheromone compounds but also the plant volatile, with a higher affinity for the pheromone than for the plant compound. In male antennae, SlCXE7 expression was associated with both long and short sensilla, tuned to sex pheromones or plant odours, respectively. Our results thus suggested that a same ODE could have a dual function depending of it sensillar localisation. Within the pheromone-sensitive sensilla, SlCXE7 may play a role in pheromone signal termination and in reduction of odorant background noise, whereas it could be involved in plant odorant inactivation within the short sensilla

    Degradation of Pheromone and Plant Volatile Components by a Same Odorant-Degrading Enzyme in the Cotton Leafworm, Spodoptera littoralis

    Get PDF
    Background: Odorant-Degrading Enzymes (ODEs) are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly removing odorant molecules from the vicinity of the olfactory receptors. Only three ODEs have been both identified at the molecular level and functionally characterized: two were specialized in the degradation of pheromone compounds and the last one was shown to degrade a plant odorant. Methodology: Previous work has shown that the antennae of the cotton leafworm Spodoptera littoralis , a worldwide pest of agricultural crops, express numerous candidate ODEs. We focused on an esterase overexpressed in males antennae, namely SlCXE7. We studied its expression patterns and tested its catalytic properties towards three odorants, i.e. the two female sex pheromone components and a green leaf volatile emitted by host plants. Conclusion: SlCXE7 expression was concomitant during development with male responsiveness to odorants and during adult scotophase with the period of male most active sexual behaviour. Furthermore, SlCXE7 transcription could be induced by male exposure to the main pheromone component, suggesting a role of Pheromone-Degrading Enzyme. Interestingly, recombinant SlCXE7 was able to efficiently hydrolyze the pheromone compounds but also the plant volatile, with a higher affinity for the pheromone than for the plant compound. In male antennae, SlCXE7 expression was associated with both long and short sensilla, tuned to sex pheromones or plant odours, respectively. Our results thus suggested that a same ODE could have a dual function depending of it sensillar localisation. Within the pheromone-sensitive sensilla, SlCXE7 may play a role in pheromone signal termination and in reduction of odorant background noise, whereas it could be involved in plant odorant inactivation within the short sensilla

    Identification of candidate odorant degrading gene/enzyme systems in the antennal transcriptome of Drosophila melanogaster

    Get PDF
    AbstractThe metabolism of volatile signal molecules by odorant degrading enzymes (ODEs) is crucial to the ongoing sensitivity and specificity of chemoreception in various insects, and a few specific esterases, cytochrome P450s, glutathione S-transferases (GSTs) and UDP-glycosyltransferases (UGTs) have previously been implicated in this process. Significant progress has been made in characterizing ODEs in Lepidoptera but very little is known about them in Diptera, including in Drosophila melanogaster, a major insect model. We have therefore carried out a transcriptomic analysis of the antennae of D. melanogaster in order to identify candidate ODEs. Virgin male and female and mated female antennal transcriptomes were determined by RNAseq. As with the Lepidoptera, we found that many esterases, cytochrome P450 enzymes, GSTs and UGTs are expressed in D. melanogaster antennae. As olfactory genes generally show selective expression in the antennae, a comparison to previously published transcriptomes for other tissues has been performed, showing preferential expression in the antennae for one esterase, JHEdup, one cytochrome P450, CYP308a1, and one GST, GSTE4. These largely uncharacterized enzymes are now prime candidates for ODE functions. JHEdup was expressed heterologously and found to have high catalytic activity against a chemically diverse group of known ester odorants for this species. This is a finding consistent with an ODE although it might suggest a general role in clearing several odorants rather than a specific role in clearing a particular odorant. Our findings do not preclude the possibility of odorant degrading functions for other antennally expressed esterases, P450s, GSTs and UGTs but, if so, they suggest that these enzymes also have additional functions in other tissues

    A Model-Based Analysis of Chemical and Temporal Patterns of Cuticular Hydrocarbons in Male Drosophila melanogaster

    Get PDF
    Drosophila Cuticular Hydrocarbons (CH) influence courtship behaviour, mating, aggregation, oviposition, and resistance to desiccation. We measured levels of 24 different CH compounds of individual male D. melanogaster hourly under a variety of environmental (LD/DD) conditions. Using a model-based analysis of CH variation, we developed an improved normalization method for CH data, and show that CH compounds have reproducible cyclic within-day temporal patterns of expression which differ between LD and DD conditions. Multivariate clustering of expression patterns identified 5 clusters of co-expressed compounds with common chemical characteristics. Turnover rate estimates suggest CH production may be a significant metabolic cost. Male cuticular hydrocarbon expression is a dynamic trait influenced by light and time of day; since abundant hydrocarbons affect male sexual behavior, males may present different pheromonal profiles at different times and under different conditions

    Molecular basis for the behavioral effects of the odorant degrading enzyme Esterase 6 in Drosophila

    Get PDF
    Previous electrophysiological and behavioural studies implicate esterase 6 in the processing of the pheromone cis-vaccenyl acetate and various food odorants that affect aggregation and reproductive behaviours. Here we show esterase 6 has relatively high activity against many of the short-mid chain food esters, but negligible activity against cis-vaccenyl acetate. The crystal structure of esterase 6 confirms its substrate-binding site can accommodate many short-mid chain food esters but not cis-vaccenyl acetate. Immunohistochemical assays show esterase 6 is expressed in non-neuronal cells in the third antennal segment that could be accessory or epidermal cells surrounding numerous olfactory sensilla, including basiconics involved in food odorant detection. Esterase 6 is also produced in trichoid sensilla, but not in the same cell types as the cis-vaccenyl acetate binding protein LUSH. Our data support a model in which esterase 6 acts as a direct odorant degrading enzyme for many bioactive food esters, but not cis-vaccenyl acetateFY was supported by the French-Australian Science and Technology Program (FAST) and a CSIRO OCE Postgraduate scholarship. MM and TC were supported by ANR-12-BSV7-0024-01. CJJ acknowledges beamtime from the Australian Synchrotron (MX2) and a Future Fellowship from the Australian Research Counci

    Molecular Evolution and Functional Diversification of Fatty Acid Desaturases after Recurrent Gene Duplication in Drosophila

    Get PDF
    Frequent gene duplications in the genome incessantly supply new genetic materials for functional innovation presumably driven by positive Darwinian selection. This mechanism in the desaturase gene family has been proposed to be important in triggering the pheromonal diversification in insects. With the recent completion of a dozen Drosophila genomes, a genome-wide perspective is possible. In this study, we first identified homologs of desaturase genes in 12 Drosophila species and noted that while gene duplication events are relatively frequent, gene losses are not scarce, especially in the desat1–desat2–desatF clade. By reconciling the gene tree with species phylogeny and the chromosomal synteny of the sequenced Drosophila genomes, at least one gene loss in desat2 and a minimum of six gene gains (resulting in seven desatF homologs, α-η), three gene losses and one relocation in desatF were inferred. Upon branching off the ancestral desat1 lineage, both desat2 and desatF gained novel functions through accelerating protein evolution. The amino acid residues under positive selection located near the catalytic sites and the C-terminal region might be responsible for altered substrate selectivity between closely related species. The association between the expression pattern of desatF-α and the chemical composition of cuticular hydrocarbons implies that the ancestral function of desatF-α is the second desaturation at the four carbons after the first double bond in diene synthesis, and the shift from bisexual to female-specific expression in desatF-α occurred in the ancestral lineage of Drosophila melanogaster subgroup. A relationship between the number of expressed desatF homologs and the diene diversification has also been observed. These results suggest that the molecular diversification of fatty acid desaturases after recurrent gene duplication plays an important role in pheromonal diversity in Drosophila

    A novel lineage of candidate pheromone receptors for sex communication in moths

    Get PDF
    Sex pheromone receptors (PRs) are key players in chemical communication between mating partners in insects. In the highly diversified insect order Lepidoptera, male PRs tuned to female-emitted type I pheromones (which make up the vast majority of pheromones identified) form a dedicated subfamily of odorant receptors (ORs). Here, using a combination of heterologous expression and in vivo genome editing methods, we bring functional evidence that at least one moth PR does not belong to this subfamily but to a distantly related OR lineage. This PR, identified in the cotton leafworm Spodoptera littoralis, is highly expressed in male antennae and is specifically tuned to the major sex pheromone component emitted by females. Together with a comprehensive phylogenetic analysis of moth ORs, our functional data suggest two independent apparitions of PRs tuned to type I pheromones in Lepidoptera, opening up a new path for studying the evolution of moth pheromone communication
    corecore