36 research outputs found

    Physiological Characterization of Stolon Regression in a Colonial Hydroid

    Get PDF
    As with many colonial animals, hydractiniid hydroids display a range of morphological variation. Sheet-like forms exhibit feeding polyps close together with short connecting stolons, whereas runner-like forms have more distant polyps and longer connecting stolons. These morphological patterns are thought to derive from rates of stolon growth and polyp formation. Here, stolon regression is identified and characterized as a potential process underlying this variation. Typically, regression can be observed in a few stolons of a normally growing colony. For detailed studies, many stolons of a colony can be induced to regress by pharmacological manipulations of reactive oxygen species (e.g. hydrogen peroxide) or reactive nitrogen species (e.g. nitric oxide). The regression process begins with a cessation of gastrovascular flow to the distal part of the stolon. High levels of endogenous H2O2 and NO then accumulate in the regressing stolon. Remarkably, exogenous treatments with either H2O2 or an NO donor equivalently trigger endogenous formation of both H2O2 and NO. Cell death during regression is suggested by both morphological features, detected by transmission electron microscopy, and DNA fragmentation, detected by TUNEL. Stolon regression may occur when colonies detect environmental signals that favor continued growth in the same location rather than outward growth

    Redox Signaling in Colonial Hydroids: Many Pathways for Peroxide

    Get PDF
    Studies of mitochondrial redox signaling predict that the colonial hydroids Eirene viridula and Podocoryna carnea should respond to manipulations of reactive oxygen species (ROS). Both species encrust surfaces with feeding polyps connected by networks of stolons; P. carnea is more ‘sheet-like’ with closely spaced polyps and short stolons, while E. viridula is more ‘runner-like’ with widely spaced polyps and long stolons. Treatment with the chemical antioxidant vitamin C diminishes ROS in mitochondrion-rich epitheliomuscular cells (EMCs) and produces phenotypic effects (sheet-like growth) similar to uncouplers of oxidative phosphorylation. In peripheral stolon tips, treatment with vitamin C triggers a dramatic increase of ROS that is followed by tissue death and stolon regression. The enzymatic anti-oxidant catalase is probably not taken up by the colony but, rather, converts hydrogen peroxide in the medium to water and oxygen. Exogenous catalase does not affect ROS in mitochondrion-rich EMCs, but does increase the amounts of ROS emitted from peripheral stolons, resulting in rapid, runner-like growth. Treatment with exogenous hydrogen peroxide increases ROS levels in stolon tips and results in somewhat faster colony growth. Finally, untreated colonies of E. viridula exhibit higher levels of ROS in stolon tips than untreated colonies of P. carnea. ROS may participate in a number of putative signaling pathways: (1) high levels of ROS may trigger cell and tissue death in peripheral stolon tips; (2) more moderate levels of ROS in stolon tips may trigger outward growth, inhibit branching and, possibly, mediate the redox signaling of mitochondrion-rich EMCs; and (3) ROS may have an extra-colony function, perhaps in suppressing the growth of bacteria

    Screening for Gonorrhea: Recommendation Statement

    Get PDF
    The U.S. Preventive Services Task Force (USPSTF) recommends that clinicians screen all sexually active women, including those who are pregnant, for gonorrhea infection if they are at increased risk for infection (that is, if they are young or have other individual or population risk factors; see Clinical Considerations for further discussion of risk factors). B recommendation

    The long-term hospitalization experience following military service in the 1991 Gulf War among veterans remaining on active duty, 1994–2004

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite more than a decade of extensive, international efforts to characterize and understand the increased symptom and illness-reporting among veterans of the 1991 Gulf War, concern over possible long-term health effects related to this deployment continue. The purpose of this study was to describe the long-term hospitalization experience of the subset of U.S. Gulf War veterans still on active duty between 1994 and 2004.</p> <p>Methods</p> <p>Gulf War veterans on active duty rosters as of October 1, 1994, were identified (n = 211 642) and compared with veterans who had separated from military service and then assessed for attrition at three-year intervals during a 10-year follow-up period, examining demographic and military service characteristics, Gulf War exposure variables, and hospitalization data. Cox proportional hazard modeling was used to evaluate independent predictors of all-cause hospitalization among those still on active duty and to estimate cumulative probability of hospitalization, 1994–2004, by service branch.</p> <p>Results</p> <p>Members of our 1994 active duty cohort were more likely to be officers, somewhat older, and married compared with those who had separated from the military after serving in the 1991 Gulf War. Selected war-related exposures or experiences did not appear to influence separation with the exception of in-theater presence during the brief ground combat phase. Overall the top three diagnostic categories for hospitalizations were musculo-skeletal, injury and poisoning, and digestive disorders. Diseases of the circulatory system and symptoms, signs, and ill-defined conditions increased proportionately over time. In-theater hospitalization was the only significant independent predictor of long-term hospitalization risk among selected war-related exposures or experiences examined. The cumulative probability of hospitalization was highest for Army and lowest for Marines.</p> <p>Conclusion</p> <p>Our results were generally consistent with a previous hospitalization study of US Gulf War veterans for the period August 1991 to July 1999. Although lack of a comparison group for our study limits interpretation of overall findings, intra-cohort analyses showed no significant associations between long-term hospitalization and war-related exposures or experiences, with the exception of in-theater hospitalization, within our active duty subset of 1991 Gulf War veterans.</p

    Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment

    Get PDF
    Veterans of Operation Desert Storm/Desert Shield - the 1991 Gulf War (GW) - are a unique population who returned from theater with multiple health complaints and disorders. Studies in the U.S. and elsewhere have consistently concluded that approximately 25-32% of this population suffers from a disorder characterized by symptoms that vary somewhat among individuals and include fatigue, headaches, cognitive dysfunction, musculoskeletal pain, and respiratory, gastrointestinal and dermatologic complaints. Gulf War illness (GWI) is the term used to describe this disorder. In addition, brain cancer occurs at increased rates in subgroups of GW veterans, as do neuropsychological and brain imaging abnormalities. Chemical exposures have become the focus of etiologic GWI research because nervous system symptoms are prominent and many neurotoxicants were present in theater, including organophosphates (OPs), carbamates, and other pesticides; sarin/cyclosarin nerve agents, and pyridostigmine bromide (PB) medications used as prophylaxis against chemical warfare attacks. Psychiatric etiologies have been ruled out. This paper reviews the recent literature on the health of 1991 GW veterans, focusing particularly on the central nervous system and on effects of toxicant exposures. In addition, it emphasizes research published since 2008, following on an exhaustive review that was published in that year that summarizes the prior literature (RACGWI, 2008). We conclude that exposure to pesticides and/or to PB are causally associated with GWI and the neurological dysfunction in GW veterans. Exposure to sarin and cyclosarin and to oil well fire emissions are also associated with neurologically based health effects, though their contribution to development of the disorder known as GWI is less clear. Gene-environment interactions are likely to have contributed to development of GWI in deployed veterans. The health consequences of chemical exposures in the GW and other conflicts have been called "toxic wounds" by veterans. This type of injury requires further study and concentrated treatment research efforts that may also benefit other occupational groups with similar exposure-related illnesses

    The NANOGrav 15-year Data Set: Evidence for a Gravitational-Wave Background

    Get PDF
    We report multiple lines of evidence for a stochastic signal that is correlated among 67 pulsars from the 15-year pulsar-timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. The correlations follow the Hellings-Downs pattern expected for a stochastic gravitational-wave background. The presence of such a gravitational-wave background with a power-law-spectrum is favored over a model with only independent pulsar noises with a Bayes factor in excess of 101410^{14}, and this same model is favored over an uncorrelated common power-law-spectrum model with Bayes factors of 200-1000, depending on spectral modeling choices. We have built a statistical background distribution for these latter Bayes factors using a method that removes inter-pulsar correlations from our data set, finding p=10−3p = 10^{-3} (approx. 3σ3\sigma) for the observed Bayes factors in the null no-correlation scenario. A frequentist test statistic built directly as a weighted sum of inter-pulsar correlations yields p=5×10−5−1.9×10−4p = 5 \times 10^{-5} - 1.9 \times 10^{-4} (approx. 3.5−4σ3.5 - 4\sigma). Assuming a fiducial f−2/3f^{-2/3} characteristic-strain spectrum, as appropriate for an ensemble of binary supermassive black-hole inspirals, the strain amplitude is 2.4−0.6+0.7×10−152.4^{+0.7}_{-0.6} \times 10^{-15} (median + 90% credible interval) at a reference frequency of 1/(1 yr). The inferred gravitational-wave background amplitude and spectrum are consistent with astrophysical expectations for a signal from a population of supermassive black-hole binaries, although more exotic cosmological and astrophysical sources cannot be excluded. The observation of Hellings-Downs correlations points to the gravitational-wave origin of this signal.Comment: 30 pages, 18 figures. Published in Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]

    Alliance of Genome Resources Portal: unified model organism research platform

    Get PDF
    The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource

    The Gene Ontology knowledgebase in 2023

    Get PDF
    The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project

    Alliance of Genome Resources Portal: unified model organism research platform

    Get PDF
    The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource
    corecore