174 research outputs found

    The Control and Treatment of East African Relapsing Fever, With Special Reference to Aureomycin and Terramycin

    Get PDF
    Abstract Not Provided

    Large-area submillimeter resolution CdZnTe strip detector for astronomy

    Get PDF
    We report the first performance measurements of a sub-millimeter CdZnTe strip detector developed as a prototype for space-borne astronomical instruments. Strip detector arrays can be used to provide two-dimensional position resolution with fewer electronic channels than pixellated arrays. Arrays of this type and other candidate technologies are under investigation for the position-sensitive backplane detector for a coded-aperture telescope operating in the range of 30 - 300 keV. The prototype is a 1.4 mm thick, 64 multiplied by 64 stripe CdZnTe array of 0.375 mm pitch in both dimensions, approximately one square inch of sensitive area. Pulse height spectra in both single and orthogonal stripe coincidence mode were recorded at several energies. The results are compared to slab- and pixel-geometry detector spectra. The room-temperature energy resolution is less than 10 keV (FWHM) for 122 keV photons with a peak-to-valley ratio greater than 5:1. The response to photons with energies up to 662 keV appears to be considerably improved relative to that of previously reported slab and pixel detectors. We also show that strip detectors can yield spatial and energy resolutions similar to those of pixellated arrays with the same dimensions. Electrostatic effects on the pulse heights, read-out circuit complexity, and issues related to design of space borne instruments are also discussed

    Development of an orthogonal-stripe CdZnTe gamma radiation imaging spectrometer

    Get PDF
    We report performance measurements of a sub-millimeter resolution CdZnTe strip detector developed as a prototype for astronomical instruments operating with good efficiency in the 30-300 keV photon energy range. The prototype is a 1.4 mm thick, 64Γ—64 contact stripe CdZnTe array of 0.375 mm pitch in both dimensions. Pulse height spectra were recorded in orthogonal-stripe coincidence mode which demonstrate room-temperature energy resolution \u3c10 keV (FWHM) for 122 keV photons with a peak-to-valley ratio \u3e5:1. Good response is also demonstrated at higher energies using a coplanar grid readout configuration. Spatial resolution capabilities finer than the stripe pitch are demonstrated. We present the image of a 133Ba source viewed through a collimator slit produced by a 4Γ—4 stripe detector segment. Charge signals from electron and hole collecting contacts are also discussed

    CdZnTe strip detectors as sub-millimeter resolution imaging gamma radiation spectrometers

    Get PDF
    We report Ξ³-ray detection performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector. The detector is a prototype for Ξ³-ray measurements in the range of 20-600 keV. The prototype is a 1.5 mm thick, 64Γ—64 orthogonal stripe CdZnTe detector of 0.375 mm pitch in both dimensions, with approximately one square inch of sensitive area. Using discrete laboratory electronics to process signals from an 8Γ—8 stripe region of the prototype we measured good spectroscopic uniformity and sub-pitch (~0.2 mm) spatial resolution in both x and y dimensions. We present below measurements of the spatial uniformity, relative timing and pulse height of the anode and cathode signals. We simulated the photon interactions and signal generation in the strip detector and the test electronics and we compare these results with the data. The data indicate that cathode signal-as well as the anode signal-arises more strongly from the conduction electrons rather than the holes

    Performance of CdZnTe strip detectors as sub-millimeter resolution imaging gamma radiation spectrometers

    Get PDF
    We report & gamma;-ray detection performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector. The detector is a prototype for & gamma;-ray astronomy measurements in the range of 20-200 keV. The prototype is a 1.5 mm thick, 64Γ—64 orthogonal stripeCdZnTe detector of 0.375 mm pitch in both dimensions, with approximately one square inch of sensitive area. Using discrete laboratory electronics to process signals from an 8Γ—8 stripe region of the prototype we measured good spectroscopic uniformity and sub-pitch (~0.2 mm) spatial resolution in both x and y dimensions. We present below measurements of the spatial uniformity, relative timing and pulse height of the anode and cathode signals, and the photon detection efficiency. We also present a technique for determining the location of the event in the third dimension (depth). We simulated the photon interactions and signal generation in the strip detector and the test electronics and we compare these results with the data. The data indicate that the cathode signal-as well as the anode signal-arises more strongly from the conduction electrons rather than the holes

    Balloon-borne coded aperture telescope for arc-minute angular resolution at hard x-ray energies

    Get PDF
    We are working on the development of a new balloon-borne telescope, MARGIE (minute-of-arc resolution gamma ray imaging experiment). It will be a coded aperture telescope designed to image hard x-rays (in various configurations) over the 20 - 600 keV range with an angular resolution approaching one arc minute. MARGIE will use one (or both) of two different detection plane technologies, each of which is capable of providing event locations with sub-mm accuracies. One such technology involves the use of cadmium zinc telluride (CZT) strip detectors. We have successfully completed a series of laboratory measurements using a prototype CZT detector with 375 micron pitch. Spatial location accuracies of better than 375 microns have been demonstrated. A second type of detection plane would be based on CsI microfiber arrays coupled to a large area silicon CCD readout array. This approach would provide spatial resolutions comparable to that of the CZT prototype. In one possible configuration, the coded mask would be 0.5 mm thick tungsten, with 0.5 mm pixels at a distance of 1.5 m from the central detector giving an angular resolution of 1 arc-minute and a fully coded field of view of 12 degrees. We review the capabilities of the MARGIE telescope and report on the status of our development efforts and our plans for a first balloon flight

    Estimation of GRB detection by FiberGLAST

    Get PDF
    FiberGLAST is one of several instrument concepts being developed for possible inclusion as the primary Gamma-ray Large Area Space Telescope (GLAST) instrument. The predicted FiberGLAST effective area is more than 12,000 cm2 for energies between 30 MeV and 300 GeV, with a field of view that is essentially flat from 0°–80Β°. The detector will achieve a sensitivity more than 10 times that of EGRET. We present results of simulations that illustrate the sensitivity of FiberGLAST for the detection of gamma-ray bursts

    Measurement of the solar neutrino capture rate with gallium metal

    Get PDF
    The solar neutrino capture rate measured by the Russian-American Gallium Experiment (SAGE) on metallic gallium during the period January 1990 through December 1997 is 67.2 (+7.2-7.0) (+3.5-3.0) SNU, where the uncertainties are statistical and systematic, respectively. This represents only about half of the predicted Standard Solar Model rate of 129 SNU. All the experimental procedures, including extraction of germanium from gallium, counting of 71Ge, and data analysis are discussed in detail.Comment: 34 pages including 14 figures, Revtex, slightly shortene

    Inhibition of Nox2 Oxidase Activity Ameliorates Influenza A Virus-Induced Lung Inflammation

    Get PDF
    Influenza A virus pandemics and emerging anti-viral resistance highlight the urgent need for novel generic pharmacological strategies that reduce both viral replication and lung inflammation. We investigated whether the primary enzymatic source of inflammatory cell ROS (reactive oxygen species), Nox2-containing NADPH oxidase, is a novel pharmacological target against the lung inflammation caused by influenza A viruses. Male WT (C57BL/6) and Nox2βˆ’/y mice were infected intranasally with low pathogenicity (X-31, H3N2) or higher pathogenicity (PR8, H1N1) influenza A virus. Viral titer, airways inflammation, superoxide and peroxynitrite production, lung histopathology, pro-inflammatory (MCP-1) and antiviral (IL-1Ξ²) cytokines/chemokines, CD8+ T cell effector function and alveolar epithelial cell apoptosis were assessed. Infection of Nox2βˆ’/y mice with X-31 virus resulted in a significant reduction in viral titers, BALF macrophages, peri-bronchial inflammation, BALF inflammatory cell superoxide and lung tissue peroxynitrite production, MCP-1 levels and alveolar epithelial cell apoptosis when compared to WT control mice. Lung levels of IL-1Ξ² were ∼3-fold higher in Nox2βˆ’/y mice. The numbers of influenza-specific CD8+DbNP366+ and DbPA224+ T cells in the BALF and spleen were comparable in WT and Nox2βˆ’/y mice. In vivo administration of the Nox2 inhibitor apocynin significantly suppressed viral titer, airways inflammation and inflammatory cell superoxide production following infection with X-31 or PR8. In conclusion, these findings indicate that Nox2 inhibitors have therapeutic potential for control of lung inflammation and damage in an influenza strain-independent manner

    Structure-Guided Evolution of Potent and Selective CHK1 Inhibitors through Scaffold Morphing

    Get PDF
    Pyrazolopyridine inhibitors with low micromolar potency for CHK1 and good selectivity against CHK2 were previously identified by fragment-based screening. The optimization of the pyrazolopyridines to a series of potent and CHK1-selective isoquinolines demonstrates how fragment-growing and scaffold morphing strategies arising from a structure-based understanding of CHK1 inhibitor binding can be combined to successfully progress fragment-derived hit matter to compounds with activity in vivo. The challenges of improving CHK1 potency and selectivity, addressing synthetic tractability, and achieving novelty in the crowded kinase inhibitor chemical space were tackled by multiple scaffold morphing steps, which progressed through tricyclic pyrimido[2,3-b]azaindoles to N-(pyrazin-2-yl)pyrimidin-4-amines and ultimately to imidazo[4,5-c]pyridines and isoquinolines. A potent and highly selective isoquinoline CHK1 inhibitor (SAR-020106) was identified, which potentiated the efficacies of irinotecan and gemcitabine in SW620 human colon carcinoma xenografts in nude mice
    • …
    corecore