605 research outputs found

    Influence of gravel and adjuvant on the compressive strength and water absorption of concrete.

    Get PDF
    Concrete is the most commonly used material in civil engineering, given its economic cost and ease of manufacture. Its strength depends on the characteristics of its constituents. A good mix makes it possible to build solid, durable and economical structures. The present work aims to characterize the gravel of the Eastern region (quarry of eastern Morocco) by granulometric analysis and water absorption. Then, the studied gravel is used to produce three types of concrete (B20, B25 and B30), which were assessed in terms of water absorption and compressive strength. The last step is to study the effect of an adjuvant, more specifically a water reducer, on mechanical characteristics of local concrete. B25 concrete was chosen for the last step since it is the most used type in the region. Results show that adding a water reducer adjuvant, in this case 'Chrysoplast', can improve the compressive strength of concrete if the percentage added is accurately determined

    Gamma-D crystallin gene (CRYGD) mutation causes autosomal dominant congenital cerulean cataracts

    Get PDF
    Congenital cataracts are a major cause of bilateral visual impairment in childhood. We mapped the gene responsible for autosomal congenital cerulean cataracts to chromosome 2q33-35 in a four generation family of Moroccan descent. The maximum lod score (7.19 at recombination fraction theta=0) was obtained for marker D2S2208 near the g-crystallin gene (CRYG) cluster. Sequencing of the coding regions of the CRYGA, B, C, and D genes showed the presence of a heterozygous C>A transversion in exon 2 of CRYGD that is associated with cataracts in this family. This mutation resulted in a proline to threonine substitution at amino acid 23 of the protein in the first of the four Greek key motifs that characterise this protein. We show that although the x ray crystallography modelling does not indicate any change of the backbone conformation, the mutation affects a region of the Greek key motif that is important for determining the topology of this protein fold. Our data suggest strongly that the proline to threonine substitution may alter the protein folding or decrease the thermodynamic stability or solubility of the protein. Furthermore, this is the first report of a mutation in this gene resulting in autosomal dominant congenital cerulean cataracts

    Hemiselmis andersenii and Chlorella stigmatophora as new sources of high‐value compounds: a lipidomic approach

    Get PDF
    To unlock the potential of Chlorella stigmatophora (Trebouxiophyceae, Chlorophyta) and Hemiselmis andersenii (Cryptophyceae, Cryptophyta) as natural reactors for biotechnological exploitation, their lipophilic extracts were characterized using Fourier Transform Infrared spectroscopy with Attenuated Total Reflectance (FTIR-ATR) and Gas Chromatography-Mass Spectrometry (GC-MS) before and after alkaline hydrolysis. The GC-MS analysis enabled the identification of 62 metabolites-namely fatty acids (27), aliphatic alcohols (17), monoglycerides (7), sterols (4), and other compounds (7). After alkaline hydrolysis, monounsaturated fatty acids increased by as much as 87%, suggesting that the esterified compounds were mainly neutral lipids. Hemiselmis andersenii yielded the highest Σω3/Σω6 ratio (7.26), indicating that it is a good source of ω3 fatty acids, in comparison to C. stigmatophora (Σω3/Σω6 = 1.24). Both microalgae presented significant amounts of aliphatic alcohols (6.81-10.95 mg · g dw-1 ), which are recognized by their cholesterol-lowering properties. The multivariate analysis allowed visualization of the chemical divergence among H. andersenii lipophilic extracts before and after alkaline hydrolysis, as well as species-specific differences. Chlorella stigmatophora showed to be a valuable source of essential fatty acids for nutraceuticals, whereas H. andersenii, due to its high chemical diversity, seems to be suitable for different fields of application.info:eu-repo/semantics/publishedVersio

    Patterns in the Fermion Mixing Matrix, a bottom-up approach

    Get PDF
    We first obtain the most general and compact parametrization of the unitary transformation diagonalizing any 3 by 3 hermitian matrix H, as a function of its elements and eigenvalues. We then study a special class of fermion mass matrices, defined by the requirement that all of the diagonalizing unitary matrices (in the up, down, charged lepton and neutrino sectors) contain at least one mixing angle much smaller than the other two. Our new parametrization allows us to quickly extract information on the patterns and predictions emerging from this scheme. In particular we find that the phase difference between two elements of the two mass matrices (of the sector in question) controls the generic size of one of the observable fermion mixing angles: i.e. just fixing that particular phase difference will "predict" the generic value of one of the mixing angles, irrespective of the value of anything else.Comment: 29 pages, 3 figures, references added, to appear in PR

    Second T = 3/2 state in 9^9B and the isobaric multiplet mass equation

    Get PDF
    Recent high-precision mass measurements and shell model calculations~[Phys. Rev. Lett. {\bf 108}, 212501 (2012)] have challenged a longstanding explanation for the requirement of a cubic isobaric multiplet mass equation for the lowest A=9A = 9 isospin quartet. The conclusions relied upon the choice of the excitation energy for the second T=3/2T = 3/2 state in 9^9B, which had two conflicting measurements prior to this work. We remeasured the energy of the state using the 9Be(3He,t)^9{\rm Be}(^3{\rm He},t) reaction and significantly disagree with the most recent measurement. Our result supports the contention that continuum coupling in the most proton-rich member of the quartet is not the predominant reason for the large cubic term required for A=9A = 9 nuclei
    corecore