5 research outputs found

    Native drivers of fish life history traits are lost during the invasion process

    Get PDF
    Rapid adaptation to global change can counter vulnerability of species to population declines and extinction. Theoretically, under such circumstances both genetic variation and phenotypic plasticity can maintain population fitness, but empirical support for this is currently limited. Here, we aim to characterize the role of environmental and genetic diversity, and their prior evolutionary history (via haplogroup profiles) in shaping patterns of life history traits during biological invasion. Data were derived from both genetic and life history traits including a morphological analysis of 29 native and invasive populations of topmouth gudgeon Pseudorasbora parva coupled with climatic variables from each location. General additive models were constructed to explain distribution of somatic growth rate (SGR) data across native and invasive ranges, with model selection performed using Akaike's information criteria. Genetic and environmental drivers that structured the life history of populations in their native range were less influential in their invasive populations. For some vertebrates at least, fitness-related trait shifts do not seem to be dependent on the level of genetic diversity or haplogroup makeup of the initial introduced propagule, nor of the availability of local environmental conditions being similar to those experienced in their native range. As long as local conditions are not beyond the species physiological threshold, its local establishment and invasive potential are likely to be determined by local drivers, such as density-dependent effects linked to resource availability or to local biotic resistance

    Origins and insights into the historic Judean date palm based on genetic analysis of germinated ancient seeds and morphometric studies

    No full text
    Germination of 2000-year-old seeds of Phoenix dactylifera from Judean desert archaeological sites provides a unique opportunity to study the Judean date palm, described in antiquity for the quality, size, and medicinal properties of its fruit, but lost for centuries. Microsatellite genotyping of germinated seeds indicates that exchanges of genetic material occurred between the Middle East (eastern) and North Africa (western) date palm gene pools, with older seeds exhibiting a more eastern nuclear genome on a gradient from east to west of genetic contributions. Ancient seeds were significantly longer and wider than modern varieties, supporting historical records of the large size of the Judean date. These findings, in accord with the region's location between east and west date palm gene pools, suggest that sophisticated agricultural practices may have contributed to the Judean date's historical reputation. Given its exceptional storage potentialities, the date palm is a remarkable model for seed longevity research

    The influence of native populations' genetic history on the reconstruction of invasion routes: the case of a highly invasive aquatic species

    No full text
    International audienceInsufficient data on the origins of the first introduced propagule and the initial stages of invasion complicate the reconstruction of a species' invasion history. Phylogeography of the native area profoundly shapes the genomic patterns of the propagules on which subsequent demographic processes of the invasion are based. Thus, a better understanding of this aspect helps to disentangle native and invasive histories. Here, we used genomic data together with clustering methods, explicit admixture tests combined with ABC models and Machine Learning algorithms, to compare patterns of genetic structure and gene flow of native and introduced populations, and infer the most likely invasion pathways of the highly invasive freshwater fish Pseudorasbora parva. This species is the vector of a novel lethal fungal-like pathogen (Sphaerothecum destruens) that is responsible for the decline of several fish species in Europe. We found that the current genetic structuring in the native range of P. parva has been shaped by waves of gene flow from populations in southern and northern China. Furthermore, our results strongly suggest that the genetic diversity of invasive populations results from recurrent global invasion pathways of admixed native populations. Our study also illustrates how the combination of admixture tests, ABC and Machine Learning can be used to detect high-resolution demographic signatures and reconstruct an integrative biological invasion history

    Native drivers of fish life history traits are lost during the invasion process

    No full text
    Rapid adaptation to global change can counter vulnerability of species to population declines and extinction. Theoretically, under such circumstances both genetic variation and phenotypic plasticity can maintain population fitness, but empirical support for this is currently limited. Here, we aim to characterize the role of environmental and genetic diversity, and their prior evolutionary history (via haplogroup profiles) in shaping patterns of life history traits during biological invasion. Data were derived from both genetic and life history traits including a morphological analysis of 29 native and invasive populations of topmouth gudgeon Pseudorasbora parva coupled with climatic variables from each location. General additive models were constructed to explain distribution of somatic growth rate (SGR) data across native and invasive ranges, with model selection performed using Akaike's information criteria. Genetic and environmental drivers that structured the life history of populations in their native range were less influential in their invasive populations. For some vertebrates at least, fitness-related trait shifts do not seem to be dependent on the level of genetic diversity or haplogroup makeup of the initial introduced propagule, nor of the availability of local environmental conditions being similar to those experienced in their native range. As long as local conditions are not beyond the species physiological threshold, its local establishment and invasive potential are likely to be determined by local drivers, such as density-dependent effects linked to resource availability or to local biotic resistance
    corecore