482 research outputs found

    Trace elements in invertebrates and fish from Kerguelen waters, southern Indian Ocean

    Get PDF
    International audienceGiven the lack of background data on essential and non-essential trace elements in invertebrates and fish known to be the predominant prey of marine mammals and seabirds breeding at the Kerguelen Islands, this study intends to provide these results of great influence for predators in higher trophic levels. To this end, plankton organisms (9 species/4 phyla), mollusks (2 bivalves and 2 squid species) and fishes (8 benthic and 10 pelagic species) from Kerguelen waters were analysed for cadmium (Cd), copper (Cu), mercury (Hg), and zinc (Zn). Individual concentrations of non-essential elements (particularly Cd) showed larger variation in comparison with essential ones due to homeostasis. Cd ranged over 4 orders of magnitude; however, Hg ranged only 1, without significant correlation to trophic level. Instead, ecological parameters (benthic/mesopelagic habitat and feeding ecology) showed a more important influence on the results. Concerning seashore organisms, bivalves collected inside the Gulf of Morbihan had higher Cd concentrations compared to those from the Kerguelen shelf, suggesting a local source of Cd, such as runoff water from bird colonies. Comparison with literature showed metal concentrations in invertebrates and fishes from Kerguelen Islands somewhat lower than in the Antarctic area, with Hg prevailing in benthic species and Cd in pelagic ones. In contrast to Hg, Cd values of squids, jellyfish and the amphipod Themisto gaudichaudii were significantly higher than all other species. Finally, top predators foraging in this area that can be subject to potentially high Hg and Cd exposure through their diet at Kerguelen are reviewed

    Long-term species, sexual and individual variations in foraging strategies of fur seals revealed by stable isotopes in whiskers

    Get PDF
    Background: Individual variations in the use of the species niche are an important component of diversity in trophic interactions. A challenge in testing consistency of individual foraging strategy is the repeated collection of information on the same individuals. Methodology/Principal Findings: The foraging strategies of sympatric fur seals (Arctocephalus gazella and A. tropicalis) were examined using the stable isotope signature of serially sampled whiskers. Most whiskers exhibited synchronous delta C-13 and delta N-15 oscillations that correspond to the seal annual movements over the long term (up to 8 years). delta C-13 and delta N-15 values were spread over large ranges, with differences between species, sexes and individuals. The main segregating mechanism operates at the spatial scale. Most seals favored foraging in subantarctic waters (where the Crozet Islands are located) where they fed on myctophids. However, A. gazella dispersed in the Antarctic Zone and A. tropicalis more in the subtropics. Gender differences in annual time budget shape the seal movements. Males that do not perform any parental care exhibited large isotopic oscillations reflecting broad annual migrations, while isotopic values of females confined to a limited foraging range during lactation exhibited smaller changes. Limited inter-individual isotopic variations occurred in female seals and in male A. tropicalis. In contrast, male A. gazella showed large inter-individual variations, with some males migrating repeatedly to high-Antarctic waters where they fed on krill, thus meaning that individual specialization occurred over years. Conclusions/Significance: Whisker isotopic signature yields unique long-term information on individual behaviour that integrates the spatial, trophic and temporal dimensions of the ecological niche. The method allows depicting the entire realized niche of the species, including some of its less well-known components such as age-, sex-, individual- and migration-related changes. It highlights intrapopulation heterogeneity in foraging strategies that could have important implications for likely demographic responses to environmental variability

    Food and feeding ecology of the sympatric thin-billed <i>Pachyptila belcheri</i> and Antarctic <i>P. desolata</i> prions at Iles Kerguelen, Southern Indian Ocean

    Get PDF
    The food and feeding ecology of the 2 closely related species of prions Pachyptila belcheri and P. desolata was investigated over 3 consecutive chick-rearing periods at Iles Kerguelen, the only place where they nest sympatrically in large numbers. In all years, the 2 prion species fed on crustaceans, with a small proportion of mesopelagic fish and squid. The hyperiid amphipod Themisto gaudichaudii was consistently the dominant prey item, accounting for 76 and 70% by number, and 57 and 57% by reconstituted mass of the diet of P. belcheri and P. desolata, respectively. Prions, however, were segregated by feeding on different euphausiids, P. belcheri on Thysanoessa sp. (18% by number and 16% by mass) and P. desolata on Euphausia vallentini (9% by number and 15% by mass). P. desolata also caught more small prey such as copepods (9 vs Lepas australis (8 vs 3% by number) than P. belcheri, which can be related to the beak filtering apparatus present only in the former species. Biogeography of the prey and their state of digestion indicate that prions foraged in a wide variety of marine habitats, including the kelp belt, kelp rafts, and coastal, neritic and oceanic waters. Noticeable is the occurrence of E. superba in a significant number of food samples (15 and 10% for P. belcheri and P. desolata, respectively), suggesting feeding in distant foraging grounds in southern Antarctic waters, >1000 km from the breeding colonies, during the chick-rearing period. The stable-carbon and -nitrogen isotopic compositions of chick feathers were identical in both species, indicating no important trophic segregation during the breeding period, when adult birds are central-place foragers. The ratios were, however, different in adult feathers, suggesting moulting in Antarctic waters for P. belcheri and in subtropical waters for P. desolata, i.e. in distinct foraging areas when birds are not constrained to return to the colonies

    Mercury exposure and short-term consequences on physiology and reproduction in Antarctic petrels

    Get PDF
    Mercury (Hg) is a pervasive contaminant reaching Antarctic environments through atmospheric transport and deposition. Seabirds as meso to top predators can accumulate high quantities of Hg through diet. Reproduction is one of the most sensitive endpoints of Hg toxicity in marine birds. Yet, few studies have explored Hg exposure and effects in Antarctic seabirds, where increasing environmental perturbations challenge animal populations. This study focuses on the Antarctic petrel Thalassoica antarctica from Svarthamaren, Antarctica, where the world\u27s largest breeding population is thought to be in decline. Hg and the stable isotopes of carbon (δ13C, proxy of feeding habitat) and nitrogen (δ15N, trophic position/diet) were measured in red blood cells from 266 individuals over two breeding years (2012–13, 2013–14). Our aims were to 1) quantify the influence of individual traits (size and sex) and feeding ecology (foraging location, δ13C and δ15N values) on Hg exposure, and 2) test the relationship between Hg concentrations with body condition and breeding output (hatching success and chick survival). Hg concentrations in Antarctic petrels (mean ± SD, 0.84 ± 0.25, min-max, 0.42–2.71 μg g−1 dw) were relatively low when compared to other Antarctic seabirds. Hg concentrations increased significantly with δ15N values, indicating that individuals with a higher trophic level (i.e. feeding more on fish) had higher Hg exposure. By contrast, Hg exposure was not driven by feeding habitat (inferred from both foraging location and δ13C values), suggesting that Hg transfer to predators in Antarctic waters is relatively homogeneous over a large geographical scale. Hg concentrations were not related to body condition, hatching date and short-term breeding output. At present, Hg exposure is likely not of concern for this population. Nevertheless, further studies on other fitness parameters and long-term breeding output are warranted because Hg can have long-term population-level effects without consequences on current breeding success

    Spring phenology shapes the spatial foraging behavior of Antarctic petrels

    Get PDF
    In polar seas, the seasonal melting of ice triggers the development of an open-water ecosystem characterized by short-lived algal blooms, the grazing and development of zooplankton, and the influx of avian and mammalian predators. Spatial heterogeneity in the timing of ice melt generates temporal variability in the development of these events across the habitat, offering a natural framework to assess how foraging marine predators respond to the spring phenology. We combined 4 yr of tracking data of Antarctic petrels Thalassoica antarctica with synoptic remote-sensing data on sea ice and chlorophyll a to test how the development of melting ice and primary production drive Antarctic petrel foraging. Cross-correlation analyses of first-passage time revealed that Antarctic petrels utilized foraging areas with a spatial scale of 300 km. These areas changed position or disappeared within 10 to 30 d and showed no spatial consistency among years. Generalized additive model (GAM) analyses suggested that the presence of foraging areas was related to the time since ice melt. Antarctic petrels concentrated their search effort in melting areas and in areas that had reached an age of 50 to 60 d from the date of ice melt. We found no significant relationship between search effort and chlorophyll a concentration. We suggest that these foraging patterns were related to the vertical distribution and profitability of the main prey, the Antarctic krill Euphausia superba. Our study demonstrates that the annual ice melt in the Southern Ocean shapes the development of a highly patchy and elusive food web, underscoring the importance of flexible foraging strategies among top predators

    Plasticity versus repeatability in seabird migratory behaviour

    Get PDF
    Pelagic seabird populations can use several discrete wintering areas, but it is unknown if individuals use the same wintering area year after year. This would have consequences for their population genetic structure and conservation. We here study the faithfulness of individuals to a moulting area within and among years in a small pelagic seabird, the Thin-billed prion, which moult their primary feathers during the early part of the non-breeding period. According to stable carbon isotope ratios (δ13C) of these feathers, 90% of Thin-billed prions moult in Antarctic and 10% in South American waters. Repeated samples from individuals in 2 or 3 years indicated that several birds changed between Antarctic and South American moulting areas or vice versa. However, individuals moulting in an area in one year were more likely to do so again. Four out of five adults maintained highly conserved δ13C over the extended moulting period. One bird, however, had systematic changes in δ13C indicating latitudinal movements between the two areas during moult. Thus, the present data show that this seabird species has a highly flexible migratory strategy, not only at the population level, but also at the individual level, enabling these seabirds to exploit a highly unpredictable environment

    Mercury exposure and short-term consequences on physiology and reproduction in Antarctic petrels

    Get PDF
    Mercury (Hg) is a pervasive contaminant reaching Antarctic environments through atmospheric transport and deposition. Seabirds as meso to top predators can accumulate high quantities of Hg through diet. Reproduction is one of the most sensitive endpoints of Hg toxicity in marine birds. Yet, few studies have explored Hg exposure and effects in Antarctic seabirds, where increasing environmental perturbations challenge animal populations. This study focuses on the Antarctic petrel Thalassoica antarctica from Svarthamaren, Antarctica, where the world\u27s largest breeding population is thought to be in decline. Hg and the stable isotopes of carbon (δ13C, proxy of feeding habitat) and nitrogen (δ15N, trophic position/diet) were measured in red blood cells from 266 individuals over two breeding years (2012–13, 2013–14). Our aims were to 1) quantify the influence of individual traits (size and sex) and feeding ecology (foraging location, δ13C and δ15N values) on Hg exposure, and 2) test the relationship between Hg concentrations with body condition and breeding output (hatching success and chick survival). Hg concentrations in Antarctic petrels (mean ± SD, 0.84 ± 0.25, min-max, 0.42–2.71 μg g−1 dw) were relatively low when compared to other Antarctic seabirds. Hg concentrations increased significantly with δ15N values, indicating that individuals with a higher trophic level (i.e. feeding more on fish) had higher Hg exposure. By contrast, Hg exposure was not driven by feeding habitat (inferred from both foraging location and δ13C values), suggesting that Hg transfer to predators in Antarctic waters is relatively homogeneous over a large geographical scale. Hg concentrations were not related to body condition, hatching date and short-term breeding output. At present, Hg exposure is likely not of concern for this population. Nevertheless, further studies on other fitness parameters and long-term breeding output are warranted because Hg can have long-term population-level effects without consequences on current breeding success. Blood Hg concentrations in Antarctic petrels were driven by trophic position and were not related to short-term breeding output

    Early-life sexual segregation: ontogeny of isotopic niche differentiation in the Antarctic fur seal

    Full text link
    Investigating the ontogeny of niche differentiation enables to determine at which life-stages sexual segregation arises, providing insights into the main factors driving resource partitioning. We investigated the ontogeny of foraging ecology in Antarctic fur seals (Arctocephalus gazella), a highly dimorphic species with contrasting breeding strategies between sexes. Sequential &delta;(13)C and &delta;(15)N values of whiskers provided a longitudinal proxy of the foraging niche throughout the whole life of seals, from weaning, when size dimorphism is minimal to the age of 5. Females exhibited an early-life ontogenetic shift, from a total segregation during their first year at-sea, to a similar isotopic niche as breeding females as early as age 2. In contrast, males showed a progressive change in isotopic niche throughout their development such that 5-year-old males did not share the same niche as territorial bulls. Interestingly, males and females segregated straight after weaning with males appearing to feed in more southerly habitats than females. This spatial segregation was of similar amplitude as observed in breeding adults and was maintained throughout development. Such early-life niche differentiation is an unusual pattern and indicates size dimorphism and breeding constraints do not directly drive sexual segregation contrary to what has been assumed in otariid seals
    • …
    corecore