877 research outputs found

    VOLMAP: a Large Scale Benchmark for Volume Mappings to Simple Base Domains

    Get PDF
    Correspondences between geometric domains (mappings) are ubiquitous in computer graphics and engineering, both for a variety of downstream applications and as core building blocks for higher level algorithms. In particular, mapping a shape to a convex or star-shaped domain with simple geometry is a fundamental module in existing pipelines for mesh generation, solid texturing, generation of shape correspondences, advanced manufacturing etc. For the case of surfaces, computing such a mapping with guarantees of injectivity is a solved problem. Conversely, robust algorithms for the generation of injective volume mappings to simple polytopes are yet to be found, making this a fundamental open problem in volume mesh processing. VOLMAP is a large scale benchmark aimed to support ongoing research in volume mapping algorithms. The dataset contains 4.7K tetrahedral meshes, whose boundary vertices are mapped to a variety of simple domains, either convex or star-shaped. This data constitutes the input for candidate algorithms, which are then required to position interior vertices in the domain to obtain a volume map. Overall, this yields more than 22K alternative test cases. VOLMAP also comprises tools to process this data, analyze the resulting maps, and extend the dataset with new meshes, boundary maps and base domains. This article provides a brief overview of the field, discussing its importance and the lack of effective techniques. We then introduce both the dataset and its major features. An example of comparative analysis between two existing methods is also present

    Deterministic Linear Time Constrained Triangulation using Simplified Earcut

    Get PDF
    Triangulation algorithms that conform to a set of non-intersecting input segments typically proceed in an incremental fashion, by inserting points first, and then segments. Inserting a segment amounts to: (1) deleting all the triangles it intersects; (2) filling the so generated hole with two polygons that have the wanted segment as shared edge; (3) triangulate each polygon separately. In this paper we prove that these polygons are such that all their convex vertices but two can be used to form triangles in an earcut fashion, without the need to check whether other polygon points are located within each ear. The fact that any simple polygon contains at least three convex vertices guarantees the existence of a valid ear to cut, ensuring convergence. Not only this translates to an optimal deterministic linear time triangulation algorithm, but such algorithm is also trivial to implement. We formally prove the correctness of our approach, also validating it in practical applications and comparing it with prior art

    Bloch Analysis of Finite Periodic Microring Chains

    Full text link
    We apply Bloch analysis to the study of finite periodic cascading of microring resonators. Diagonalization of the standard transfer matrix approach not only allows to find an exact analytic expression for transmission and reflection, but also to derive a closed form solution for the field in every point of the structure. To give more physical insight we analyze the main features of the transmission resonances in a finite chain and we give some hints for their experimental verificationComment: 19 pages, 4 figure

    The habit-driven life: Accounting for inertia in departure time choices for commuting trips

    Get PDF
    This paper aims to explicitly account for the impact of inertia (or habit) on departure time decisions, and explore (1) to what extent departure time is influenced by inertia, (2) what influences individuals’ inertia with respect to departure time decisions, and (3) to what extent it impacts transport policies. We estimate an integrated choice and latent variable (ICLV) model using a stated preference survey for morning car commuters in the Greater Copenhagen Area. We interact the rescheduling components in the Scheduling Model (SM) with the latent variable Inertia. The modelling results show that higher levels of inertia yields higher rescheduling penalties and lower willing to shift departure time. Furthermore, we find that inertia in departure time is influenced by gender, presence of children in the household as well as work type. We test the behavioral responses to demand management policies for segments with different inertia, and find that the least inertial segment showed the highest substitution patterns, while the most inertial segment show the lowest substitution patterns. Finally, we compared the ICLV model to a reference model without inertia, and find that the effects of the demand management strategy is overestimated if inertia is neglected

    HexBox: Interactive Box Modeling of Hexahedral Meshes

    Get PDF
    We introduce HexBox, an intuitive modeling method and interactive tool for creating and editing hexahedral meshes. Hexbox brings the major and widely validated surface modeling paradigm of surface box modeling into the world of hex meshing. The main idea is to allow the user to box-model a volumetric mesh by primarily modifying its surface through a set of topological and geometric operations. We support, in particular, local and global subdivision, various instantiations of extrusion, removal, and cloning of elements, the creation of non-conformal or conformal grids, as well as shape modifications through vertex positioning, including manual editing, automatic smoothing, or, eventually, projection on an externally-provided target surface. At the core of the efficient implementation of the method is the coherent maintenance, at all steps, of two parallel data structures: a hexahedral mesh representing the topology and geometry of the currently modeled shape, and a directed acyclic graph that connects operation nodes to the affected mesh hexahedra. Operations are realized by exploiting recent advancements in grid- based meshing, such as mixing of 3-refinement, 2-refinement, and face-refinement, and using templated topological bridges to enforce on-the-fly mesh conformity across pairs of adjacent elements. A direct manipulation user interface lets users control all operations. The effectiveness of our tool, released as open source to the community, is demonstrated by modeling several complex shapes hard to realize with competing tools and techniques

    Distribution of HLA-DPB1, -DQB1 -DQA1 alleles among Sardinian celiac patients.

    Get PDF
    The Sardinian population in many aspects differs from other Caucasoid populations, particularly for its degree of homogeneity. For this reason we have studied 50 adult Sardinian patients with celiac disease (CD) and 50 control healthy Sardinian individuals by RFLP analysis and by extensive oligotyping for 17 HLA-DPB 1, 8-DQB I and 9-DQA 1 alleles, and established their -DPB I alleles and -DQB I -DQA I genotypes. The heterodimer HLA-DQB 1 *0201/-DQA 1 *0501, present in 96% of our patients, is strongly associated with CD susceptibility, confirming published reports. On the other hand we found in 11 of 50 probands (22%) the presence of the allele -DQB 1 *05021 DQA1*0102. This genotype is extremely rare in other Caucasian populations and appears to confer limited protection in CD Sardinian patients

    Dopamine genes and migraine

    Get PDF
    Migraine is a common chronic disorder with an etiology still mostly unknown. Several neurotransmitters such as dopamine and serotonin are considered to be involved in the pathogenesis of the disease and the study of their systems is crucial in the understanding of migraine. Dopaminergic receptors are variously represented in human CNS and periphery. The hypothesis that a hypersensitivity of the dopaminergic system may have a role in migraine is based on clinical and genetic data. Genetic data are represented by association studies using dopaminergic genes as candidate genes which show that the D2 receptor gene appears to be involved in the pathogenesis of migraine

    Structural determinants in the C-terminal domain of apolipoprotein E mediating binding to the protein core of human aortic biglycan.

    Get PDF
    Abstract Apolipoprotein (apo) E-containing high density lipoprotein particles were reported to interact in vitrowith the proteoglycan biglycan (Bg), but the direct participation of apoE in this binding was not defined. To this end, we examined thein vitro binding of apoE complexed with dimyristoylphosphatidylcholine (DMPC) to human aortic Bg before and after glycosaminoglycan (GAG) depletion. In a solid-phase assay, apoE·DMPC bound to Bg and GAG-depleted protein core in a similar manner, suggesting a protein-protein mode of interaction. The binding was decreased in the presence of 1 m NaCl and was partially inhibited by either positively (0.2 m lysine, arginine) or negatively charged (0.2 m aspartic, glutamic) amino acids. A recombinant apoE fragment representing the C-terminal 10-kDa domain, complexed with DMPC, bound as efficiently as full-length apoE, whereas the N-terminal 22-kDa domain was inactive. Similar results were obtained with a gel mobility shift assay. Competition studies using a series of recombinant truncated apoEs showed that the charged segment in the C-terminal domain between residues 223 and 230 was involved in the binding. Overall, our results demonstrate that the C-terminal domain contains elements critical for the binding of apoE to the Bg protein core and that this binding is ionic in nature and independent of GAGs
    corecore