10 research outputs found

    The Relationship Between Parental Attachment and Mobile Phone Dependence Among Chinese Rural Adolescents: The Role of Alexithymia and Mindfulness

    Get PDF
    Mobile phone has experienced a significant increase in popularity among adolescents in recent years. Findings indicate dependence on mobile phone is related to poor parent-child relationship. However, previous research on mobile phone dependence (MPD) is scant and mainly focus on adult samples. In this view, the present study investigated the association between parental attachment and MPD as well as its influence mechanism, in sample of adolescents in rural China. Data were collected from three middle schools in rural areas of Jiangxi and Hubei Province (N = 693, 46.46% female, Mage = 14.88, SD = 1.77). Participants completed the Inventory of Parent and Peer Attachment (IPPA), the twenty-item Toronto alexithymia scale (TAS-20), the Mindful Attention Awareness Scale (MAAS) and the Mobile Phone Addiction Index Scale (MPAI). Among the results, parental attachment negatively predicted MPD and alexithymia were exerting partial mediation effect between parental attachment and MPD. Further, mindfulness acted as moderator of the relationship between alexithymia and MPD: The negative impact of alexithymia on MPD was weakened under the condition of high level of mindfulness. Knowledge of this mechanism could be useful for understanding adolescents’ MPD in terms of the interaction of multiple factors

    Leveraging SE(3) Equivariance for Learning 3D Geometric Shape Assembly

    Full text link
    Shape assembly aims to reassemble parts (or fragments) into a complete object, which is a common task in our daily life. Different from the semantic part assembly (e.g., assembling a chair's semantic parts like legs into a whole chair), geometric part assembly (e.g., assembling bowl fragments into a complete bowl) is an emerging task in computer vision and robotics. Instead of semantic information, this task focuses on geometric information of parts. As the both geometric and pose space of fractured parts are exceptionally large, shape pose disentanglement of part representations is beneficial to geometric shape assembly. In our paper, we propose to leverage SE(3) equivariance for such shape pose disentanglement. Moreover, while previous works in vision and robotics only consider SE(3) equivariance for the representations of single objects, we move a step forward and propose leveraging SE(3) equivariance for representations considering multi-part correlations, which further boosts the performance of the multi-part assembly. Experiments demonstrate the significance of SE(3) equivariance and our proposed method for geometric shape assembly. Project page: https://crtie.github.io/SE-3-part-assembly/Comment: ICCV 2023, Project page: https://crtie.github.io/SE-3-part-assembly/ , Code: https://github.com/crtie/Leveraging-SE-3-Equivariance-for-Learning-3D-Geometric-Shape-Assembl

    Endoplasmic reticulum homeostasis: a potential target for diabetic nephropathy

    Get PDF
    The endoplasmic reticulum (ER) is the most vigorous organelle in intracellular metabolism and is involved in physiological processes such as protein and lipid synthesis and calcium ion transport. Recently, the abnormal function of the ER has also been reported to be involved in the progression of kidney disease, especially in diabetic nephropathy (DN). Here, we reviewed the function of the ER and summarized the regulation of homeostasis through the UPR and ER-phagy. Then, we also reviewed the role of abnormal ER homeostasis in residential renal cells in DN. Finally, some ER stress activators and inhibitors were also summarized, and the possibility of maintaining ER homeostasis as a potential therapeutic target for DN was discussed

    SAW Tags with Enhanced Penetration Depth for Buried Assets Identification

    No full text

    Automatic 3D joint erosion detection for the diagnosis and monitoring of rheumatoid arthritis using hand HR-pQCT images

    No full text
    Rheumatoid arthritis (RA) is a chronic inflammatory disease. It leads to bone erosion in joints and other complications, which severely affect patients' quality of life. To accurately diagnose and monitor the progression of RA, quantitative imaging and analysis tools are desirable. High-resolution peripheral quantitative computed tomography (HR-pQCT) is such a promising tool for monitoring disease progression in RA. However, automatic erosion detection tools using HR-pQCT images are not yet available. Inspired by the consensus among radiologists on the erosions in HR-pQCT images, in this paper we define erosion as the significant concave regions on the cortical layer, and develop a model-based 3D automatic erosion detection method. It mainly consists of two steps: constructing closed cortical surface, and detecting erosion regions on the surface. In the first step, we propose an initialization-robust region competition methods for joint segmentation, and then fill the surface gaps by using joint bone separation and curvature-based surface alignment. In the second step, we analyze the curvature information of each voxel, and then aggregate the candidate voxels into concave surface regions and use the shape information of the regions to detect the erosions. We perform qualitative assessments of the new method using 59 well-annotated joint volumes. Our method has shown satisfactory and consistent performance compared with the annotations provided by medical experts

    The IL-17 pathway intertwines with neurotrophin and TLR/IL-1R pathways since its domain shuffling origin

    No full text
    International audienceThe IL-17 pathway displays remarkably diverse functional modes between different subphyla, classes, and even orders, yet its driving factors remains elusive. Here, we demonstrate that the IL-17 pathway originated through domain shuffling between a Toll-like receptor (TLR)/IL-1R pathway and a neurotrophin-RTK (receptor-tyrosine-kinase) pathway (a Trunk-Torso pathway). Unlike other new pathways that evolve independently, the IL-17 pathway remains intertwined with its donor pathways throughout later evolution. This intertwining not only influenced the gains and losses of domains and components in the pathway but also drove the diversification of the pathway’s functional modes among animal lineages. For instance, we reveal that the crustacean female sex hormone, a neurotrophin inducing sex differentiation, could interact with IL-17Rs and thus be classified as true IL-17s. Additionally, the insect prothoracicotropic hormone, a neurotrophin initiating ecdysis in Drosophila by binding to Torso, could bind to IL-17Rs in other insects. Furthermore, IL-17R and TLR/IL-1R pathways maintain crosstalk in amphioxus and zebrafish. Moreover, the loss of the Death domain in the pathway adaptor connection to IκB kinase and stress-activated protein kinase (CIKSs) dramatically reduced their abilities to activate nuclear factor-kappaB (NF-κB) and activator protein 1 (AP-1) in amphioxus and zebrafish. Reinstating this Death domain not only enhanced NF-κB/AP-1 activation but also strengthened anti-bacterial immunity in zebrafish larvae. This could explain why the mammalian IL-17 pathway, whose CIKS also lacks Death, is considered a weak signaling activator, relying on synergies with other pathways. Our findings provide insights into the functional diversity of the IL-17 pathway and unveil evolutionary principles that could govern the pathway and be used to redesign and manipulate it

    DsbA-L interacting with catalase in peroxisome improves tubular oxidative damage in diabetic nephropathy

    No full text
    Peroxisomes are metabolically active organelles that are known for exerting oxidative metabolism, but the precise mechanism remains unclear in diabetic nephropathy (DN). Here, we used proteomics to uncover a correlation between the antioxidant protein disulfide-bond A oxidoreductase-like protein (DsbA-L) and peroxisomal function. In vivo, renal tubular injury, oxidative stress, and cell apoptosis in high-fat diet plus streptozotocin (STZ)-induced diabetic mice were significantly increased, and these changes were accompanied by a ''ghost'' peroxisomal phenotype, which was further aggravated in DsbA-L-deficient diabetic mice. In vitro, the overexpression of DsbA-L in peroxisomes could improve peroxisomal phenotype and function, reduce oxidative stress and cell apoptosis induced by high glucose (HG, 30 mM) and palmitic acid (PA, 250 μM), but this effect was reversed by 3-Amino-1,2,4-triazole (3-AT, a catalase inhibitor). Mechanistically, DsbA-L regulated the activity of catalase by binding to it, thereby reducing peroxisomal leakage and proteasomal degradation of peroxisomal matrix proteins induced by HG and PA. Additionally, the expression of DsbA-L in renal tubules of patients with DN significantly decreased and was positively correlated with peroxisomal function. Taken together, these results highlight an important role of DsbA-L in ameliorating tubular injury in DN by improving peroxisomal function
    corecore