5 research outputs found

    ANTIMICROBIAL ACTIVITY OF CINNAMALDEHYDE, VANILLIN AND KIGELIA AFRICANA FRUIT EXTRACTS AGAINST FISH-ASSOCIATED CHRYSEOBACTERIUM AND MYROIDES SPP. ISOLATES

    Get PDF
    Background: Members of the family Flavobacteriaceae exhibit intrinsic multi-drug resistance, which hampers their effective eradication. Phytochemicals are being explored as alternatives to the use of antimicrobial agents in aquaculture since they have growth-promoting, immune-stimulating, and antimicrobial properties. Materials and Methods: The susceptibility of 36 Chryseobacterium and seven Myroides spp. isolates from salmon, tilapia and trout as well as 19 selected Flavobacteriaceae type strains to cinnamaldehyde, vanillin and four crude Kigelia africana extracts (ethyl acetate, dichloromethane, methanol and hexane), was assessed using disc diffusion assays and compared to standard antimicrobial agents, ampicillin and tetracycline using activity indices. Results: Cinnamaldehyde (≥250 µg/ml) was the most effective (77. 8 – 100% susceptibility) while vanillin was the least effective with inhibitory activity only at 1000 µg/ml. The K. africana hexane extract (4 mg/ml) was the most effective, with only 11.3% of isolates displaying resistance, while 94.4% of isolates demonstrated resistance to ampicillin and 38.9% susceptibility to tetracycline. K. africana extract inhibitory efficacy decreased in the following order: hexane > ethyl acetate > dichloromethane > methanol. Cinnamaldehyde and K. africana EX 4 activity indices ≥ 1 were obtained for 83.3 - 97.2% and 25% of Chryseobacterium spp. isolates, respectively, relative to tetracycline. Conclusions: Cinnamaldehyde and K. africana fruit hexane extracts are promising candidates to be tested for their efficacy in the treatment of Chryseobacterium/Myroides-associated fish infections. These phytochemicals might serve as environmentally-friendly, cost-effective alternatives to the use of antimicrobial agents in aquaculture farms, with a lesser chance of resistance development

    Genotyping and biofilm formation of Mycoplasma hyopneumoniae and their association with virulence

    Get PDF
    Mycoplasma hyopneumoniae, the causative agent of swine respiratory disease, demonstrates differences in virulence. However, factors associated with this variation remain unknown. We herein evaluated the association between differences in virulence and genotypes as well as phenotype (i.e., biofilm formation ability). Strains 168 L, RM48, XLW-2, and J show low virulence and strains 232, 7448, 7422, 168, NJ, and LH show high virulence, as determined through animal challenge experiments, complemented with in vitro tracheal mucosa infection tests. These 10 strains with known virulence were then subjected to classification via multilocus sequence typing (MLST) with three housekeeping genes, P146-based genotyping, and multilocus variable-number tandem-repeat analysis (MLVA) of 13 loci. MLST and P146-based genotyping identified 168, 168 L, NJ, and RM48 as the same type and clustered them in a single branch. MLVA assigned a different sequence type to each strain. Simpson’s index of diversity indicates a higher discriminatory ability for MLVA. However, no statistically significant correlation was found between genotypes and virulence. Furthermore, we investigated the correlation between virulence and biofilm formation ability. The strains showing high virulence demonstrate strong biofilm formation ability, while attenuated strains show low biofilm formation ability. Pearson correlation analysis revealed a significant positive correlation between biofilm formation ability and virulence. To conclude, there was no association between virulence and our genotyping data, but virulence was found to be significantly associated with the biofilm formation ability of M. hyopneumoniae

    Emergence and Spread of Extended Spectrum β-Lactamase Producing Enterobacteriaceae (ESBL-PE) in Pigs and Exposed Workers: A Multicentre Comparative Study between Cameroon and South Africa

    No full text
    Extended spectrum β-lactamase-producing Enterobacteriaceae (ESBL-PE) represent a significant public health concern globally and are recognized by the World Health Organization as pathogens of critical priority. However, the prevalence of ESBL-PE in food animals and humans across the farm-to-plate continuum is yet to be elucidated in Sub-Saharan countries including Cameroon and South Africa. This work sought to determine the risk factors, carriage, antimicrobial resistance profiles and genetic relatedness of extended spectrum β-lactamase producing Enterobacteriaceae (ESBL-PE) amid pigs and abattoir workers in Cameroon and South Africa. ESBL-PE from pooled samples of 432 pigs and nasal and hand swabs of 82 humans were confirmed with VITEK 2 system. Genomic fingerprinting was performed by ERIC-PCR. Logistic regression (univariate and multivariate) analyses were carried out to identify risk factors for human ESBL-PE carriage using a questionnaire survey amongst abattoir workers. ESBL-PE prevalence in animal samples from Cameroon were higher than for South Africa and ESBL-PE carriage was observed in Cameroonian workers only. Nasal ESBL-PE colonization was statistically significantly associated with hand ESBL-PE (21.95% vs. 91.67%; p = 0.000; OR = 39.11; 95% CI 2.02–755.72; p = 0.015). Low level of education, lesser monthly income, previous hospitalization, recent antibiotic use, inadequate handwashing, lack of training and contact with poultry were the risk factors identified. The study highlights the threat posed by ESBL-PE in the food chain and recommends the implementation of effective strategies for antibiotic resistance containment in both countries
    corecore