9,553 research outputs found

    Problems of QCD factorization in exclusive decays of B meson to charmonium

    Full text link
    We study the exclusive decays of BB meson into P-wave charmonium states χcJ(J=0,1)\chi_{cJ}(J=0,1) in the QCD factorization approach with light-cone distribution functions describing the mesons in the processes. For Bχc1KB \to \chi_{c1} K decay, we find that there are logarithmic divergences arising from nonfactorizable spectator interactions even at twist-2 order and the decay rate is too small to accommodate the experimental data. For Bχc0KB\to \chi_{c0} K decay, we find that aside from the logarithmic divergences arising from spectator interactions at leading-twist order, more importantly, the factorization will break down due to the infrared divergence arising from nonfactorizable vertex corrections, which is independent of the specific form of the light-cone distribution functions. Our results may indicate that QCD factorization in the present form may not be safely applied to BB-meson exclusive decays to charmonium states.Comment: Latex, 7 pages, 1 eps figure, final version to appear in Phys.Lett.B; a few references are added, the expression of chi_c1 decay constant is give

    Ventricular divergence correlates with epicardial wavebreaks and predicts ventricular arrhythmia in isolated rabbit hearts during therapeutic hypothermia

    Get PDF
    INTRODUCTION: High beat-to-beat morphological variation (divergence) on the ventricular electrogram during programmed ventricular stimulation (PVS) is associated with increased risk of ventricular fibrillation (VF), with unclear mechanisms. We hypothesized that ventricular divergence is associated with epicardial wavebreaks during PVS, and that it predicts VF occurrence. METHOD AND RESULTS: Langendorff-perfused rabbit hearts (n = 10) underwent 30-min therapeutic hypothermia (TH, 30°C), followed by a 20-min treatment with rotigaptide (300 nM), a gap junction modifier. VF inducibility was tested using burst ventricular pacing at the shortest pacing cycle length achieving 1:1 ventricular capture. Pseudo-ECG (p-ECG) and epicardial activation maps were simultaneously recorded for divergence and wavebreaks analysis, respectively. A total of 112 optical and p-ECG recordings (62 at TH, 50 at TH treated with rotigaptide) were analyzed. Adding rotigaptide reduced ventricular divergence, from 0.13±0.10 at TH to 0.09±0.07 (p = 0.018). Similarly, rotigaptide reduced the number of epicardial wavebreaks, from 0.59±0.73 at TH to 0.30±0.49 (p = 0.036). VF inducibility decreased, from 48±31% at TH to 22±32% after rotigaptide infusion (p = 0.032). Linear regression models showed that ventricular divergence correlated with epicardial wavebreaks during TH (p<0.001). CONCLUSION: Ventricular divergence correlated with, and might be predictive of epicardial wavebreaks during PVS at TH. Rotigaptide decreased both the ventricular divergence and epicardial wavebreaks, and reduced the probability of pacing-induced VF during TH

    Charmless hadronic decays BPP,PV,VVB \to PP, PV, VV and new physics effects in the general two-Higgs doublet models

    Get PDF
    Based on the low-energy effective Hamiltonian with the generalized factorization, we calculate the new physics contributions to the branching ratios of the two-body charmless hadronic decays of BuB_u and BdB_d mesons induced by the new gluonic and electroweak charged-Higgs penguin diagrams in the general two-Higgs doublet models (models I, II and III). Within the considered parameter space, we find that: (a) the new physics effects from new gluonic penguin diagrams strongly dominate over those from the new γ\gamma- and Z0Z^0- penguin diagrams; (b) in models I and II, new physics contributions to most studied B meson decay channels are rather small in size: from -15% to 20%; (c) in model III, however, the new physics enhancements to the penguin-dominated decay modes can be significant, (30200)\sim (30 -200)%, and therefore are measurable in forthcoming high precision B experiments; (d) the new physics enhancements to ratios {\cal B}(B \to K \etap) are significant in model III, (3570)\sim (35 -70)%, and hence provide a simple and plausible new physics interpretation for the observed unexpectedly large B \to K \etap decay rates; (e) the theoretical predictions for B(BK+π){\cal B}(B \to K^+ \pi) and B(BK0π+){\cal B}(B \to K^0 \pi^+) in model III are still consistent with the data within 2σ2\sigma errors; (f) the significant new physics enhancements to the branching ratios of BK0π0,Kη,K+π,K+ϕ,K0ω,K+ϕB \to K^0 \pi^0, K^* \eta, K^{*+} \pi^-, K^+ \phi, K^{*0} \omega, K^{*+} \phi and K0ϕK^{*0} \phi decays are helpful to improve the agreement between the data and the theoretical predictions; (g) the theoretical predictions of B(BPP,PV,VV){\cal B}(B \to PP, PV, VV) in the 2HDM's are generally consistent with experimental measurements and upper limits (9090% C.L.)Comment: 55 pages, Latex file, 17 PS and EPS figures. With minor corrections, final version to be published in Phys.Rev. D. Repot-no: PKU-TH-2000-4

    Gauge Theory of Elementary Particle Physics

    Get PDF
    The aim of this book is to provide student and researcher with a practical introduction to some of the principal ideas in gauge theories and their applications to elementary particle physics. Elementary particle physics has made remarkable progress. We have a comprehensive theory of particle interactions. One can argue that it gives a complete and correct description of all non-gravitational physics. This theory is based on the principle of gauge symmetry. Strong, weak, and electromagnetic interactions are all gauge interactions. A knowledge of gauge theory is essential for anyone interested in modern high energy physics. Regardless of the ultimate correctness of every detail of this theory, it is the framework within which new theoretical and experimental advances will be interpreted in the foreseeable future

    Surface faceting and reconstruction of ceria nanoparticles

    Get PDF
    The surface atomic arrangement of metal oxides determines their physical and chemical properties, and the ability to control and optimize structural parameters is of crucial importance for many applications, in particular in heterogeneous catalysis and photocatalysis. Whereas the structures of macroscopic single crystals can be determined with established methods, for nanoparticles (NPs), this is a challenging task. Herein, we describe the use of CO as a probe molecule to determine the structure of the surfaces exposed by rod-shaped ceria NPs. After calibrating the CO stretching frequencies using results obtained for different ceria single-crystal surfaces, we found that the rod-shaped NPs actually restructure and expose {111} nanofacets. This finding has important consequences for understanding the controversial surface chemistry of these catalytically highly active ceria NPs and paves the way for the predictive, rational design of catalytic materials at the nanoscale.Postprint (author's final draft

    Gauge theory of elementary particle physics

    Get PDF
    Students of particle physics often find it difficult to locate resources to learn calculational techniques. Intermediate steps are not usually given in the research literature. To a certain extent, this is also the case even in some of the textbooks. In this book of worked problems we have made an effort to provide enough details so that a student starting in the field will understand the solution in each case. Our hope is that with this step-by-step guidance, students (after first attempting the solution themselves) can develop their skill, and confidence in their ability, to work out particle theory problems

    Gauge Theory of Elementary Particle Physics

    Get PDF
    The aim of this book is to provide student and researcher with a practical introduction to some of the principal ideas in gauge theories and their applications to elementary particle physics. Elementary particle physics has made remarkable progress. We have a comprehensive theory of particle interactions. One can argue that it gives a complete and correct description of all non-gravitational physics. This theory is based on the principle of gauge symmetry. Strong, weak, and electromagnetic interactions are all gauge interactions. A knowledge of gauge theory is essential for anyone interested in modern high energy physics. Regardless of the ultimate correctness of every detail of this theory, it is the framework within which new theoretical and experimental advances will be interpreted in the foreseeable future

    Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior

    Get PDF
    Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT). The RTT missense MECP2 R306C mutation prevents MeCP2 from interacting with the NCoR/histone deacetylase 3 (HDAC3) complex; however, the neuronal function of HDAC3 is incompletely understood. We found that neuronal deletion of Hdac3 in mice elicited abnormal locomotor coordination, sociability and cognition. Transcriptional and chromatin profiling revealed that HDAC3 positively regulated a subset of genes and was recruited to active gene promoters via MeCP2. HDAC3-associated promoters were enriched for the FOXO transcription factors, and FOXO acetylation was elevated in Hdac3 knockout (KO) and Mecp2 KO neurons. Human RTT-patient-derived MECP2 R306C neural progenitor cells had deficits in HDAC3 and FOXO recruitment and gene expression. Gene editing of MECP2 R306C cells to generate isogenic controls rescued HDAC3-FOXO-mediated impairments in gene expression. Our data suggest that HDAC3 interaction with MeCP2 positively regulates a subset of neuronal genes through FOXO deacetylation, and disruption of HDAC3 contributes to cognitive and social impairment.National Institutes of Health (U.S.) (Grant NS78839

    Glutamatergic Dysfunction and Glutamatergic Compounds for Major Psychiatric Disorders: Evidence From Clinical Neuroimaging Studies

    Get PDF
    Excessive glutamate release has been linked to stress and many neurodegenerative diseases. Evidence indicates abnormalities of glutamatergic neurotransmission or glutamatergic dysfunction as playing an important role in the development of many major psychiatric disorders (e.g., schizophrenia, bipolar disorder, and major depressive disorder). Recently, ketamine, an N-methyl-d-aspartate antagonist, has been demonstrated to have promisingly rapid antidepressant efficacy for treatment-resistant depression. Many compounds that target the glutamate system have also become available that possess potential in the treatment of major psychiatric disorders. In this review, we update evidence from recent human studies that directly or indirectly measured glutamatergic neurotransmission and function in major psychiatric disorders using modalities such as magnetic resonance spectroscopy, positron emission tomography/single-photon emission computed tomography, and paired-pulse transcranial magnetic stimulation. The newer generation of antidepressants that target the glutamatergic system developed in human clinical studies is also reviewed
    corecore