1,253 research outputs found

    Word matching using single closed contours for indexing handwritten historical documents

    Get PDF
    Effective indexing is crucial for providing convenient access to scanned versions of large collections of historically valuable handwritten manuscripts. Since traditional handwriting recognizers based on optical character recognition (OCR) do not perform well on historical documents, recently a holistic word recognition approach has gained in popularity as an attractive and more straightforward solution (Lavrenko et al. in proc. document Image Analysis for Libraries (DIAL’04), pp. 278–287, 2004). Such techniques attempt to recognize words based on scalar and profile-based features extracted from whole word images. In this paper, we propose a new approach to holistic word recognition for historical handwritten manuscripts based on matching word contours instead of whole images or word profiles. The new method consists of robust extraction of closed word contours and the application of an elastic contour matching technique proposed originally for general shapes (Adamek and O’Connor in IEEE Trans Circuits Syst Video Technol 5:2004). We demonstrate that multiscale contour-based descriptors can effectively capture intrinsic word features avoiding any segmentation of words into smaller subunits. Our experiments show a recognition accuracy of 83%, which considerably exceeds the performance of other systems reported in the literature

    Underwater explosion of cylindrical charge near plates: Analysis of pressure characteristics and cavitation effects

    Get PDF
    In this paper, a coupled scheme utilizing advantages of the Runge–Kutta discontinuous Galerkin (RKDG) method and finite elements is applied to investigate cavitation induced by rarefaction waves during a near-field underwater explosion of cylindrical charge. A high-order RKDG method has advantages of an accurate shock capturing. So, it was used to solve a governing Eulerian equation for a compressible fluid. A finite-element method (FEM) was suitable to deal with problems of a shock response of structures and, therefore, applied for structural analysis. The suggested method was used to study pressure characteristics and cavitation effects of underwater explosions of cylindrical charges near single/double plates. First, a cavitation model was introduced in the RKDG method, and a numerical model of a high-pressure bubble in a cylinder was developed. The obtained numerical results were compared with the known solution in order to verify the validity of the suggested method. Second, a RKDG-FEM model of underwater explosion of a spherical charge near a plate was developed; its results for maximum deflection at the centre of the plate were compared with experimental data to prove the effectiveness of the coupled algorithm. Then, this algorithm was employed to simulate the process of underwater explosions of cylindrical charges near a single plate. Here, effects of different parameters - thickness of the plate and a distance between the charge and the plate - on pressure and cavitation characteristics were studied. Finally, a numerical model of double plates subjected to a near-field underwater explosion was developed. Cavitation evolution and its effect on shock-wave loading were analysed. Additionally, the effect of the distance between two plates was studied. The suggested analysis and its results provide a reference for load characteristics of near-field underwater explosions and shock response of structures

    The role of Schizosaccharomyces pombe SUMO ligases in genome stability

    Get PDF
    SUMOylation is a post-translational modification that affects a large number of proteins, many of which are nuclear. While the role of SUMOylation is beginning to be elucidated, it is clear that understanding the mechanisms that regulate the process is likely to be important. Control of the levels of SUMOylation is brought about through a balance of conjugating and deconjugating activities, i.e. of SUMO (small ubiquitin-related modifier) conjugators and ligases versus SUMO proteases. Although conjugation of SUMO to proteins can occur in the absence of a SUMO ligase, it is apparent that SUMO ligases facilitate the SUMOylation of specific subsets of proteins. Two SUMO ligases in Schizosaccharomyces pombe, Pli1 and Nse2, have been identified, both of which have roles in genome stability. We report here on a comparison between the properties of the two proteins and discuss potential roles for the proteins

    Quantum Ferromagnetism and Phase Transitions in Double-Layer Quantum Hall Systems

    Full text link
    Double layer quantum Hall systems have interesting properties associated with interlayer correlations. At ν=1/m\nu =1/m where mm is an odd integer they exhibit spontaneous symmetry breaking equivalent to that of spin 1/21/2 easy-plane ferromagnets, with the layer degree of freedom playing the role of spin. We explore the rich variety of quantum and finite temperature phase transitions in these systems. In particular, we show that a magnetic field oriented parallel to the layers induces a highly collective commensurate-incommensurate phase transition in the magnetic order.Comment: 4 pages, REVTEX 3.0, IUCM93-013, 1 FIGURE, hardcopy available from: [email protected]

    Probing the Role of Magnetic-Field Variations in NOAA AR 8038 in Producing Solar Flare and CME on 12 May 1997

    Full text link
    We carried out a multi-wavelength study of a CME and a medium-size 1B/C1.3 flare occurring on 12 May 1997. We present the investigation of magnetic-field variations in the NOAA Active Region 8038 which was observed on the Sun during 7--16 May 1997. Analyses of H{\alpha} filtergrams and MDI/SOHO magnetograms revealed continual but discrete surge activity, and emergence and cancellation of flux in this active region. The movie of these magnetograms revealed two important results that the major opposite polarities of pre-existing region as well as in the emerging flux region (EFR) were approaching towards each other and moving magnetic features (MMF) were ejecting out from the major north polarity at a quasi-periodicity of about ten hrs during 10--13 May 1997. These activities were probably caused by the magnetic reconnection in the lower atmosphere driven by photospheric convergence motions, which were evident in magnetograms. The magnetic field variations such as flux, gradient, and sunspot rotation revealed that free energy was slowly being stored in the corona. The slow low-layer magnetic reconnection may be responsible for this storage and the formation of a sigmoidal core field or a flux rope leading to the eventual eruption. The occurrence of EUV brightenings in the sigmoidal core field prior to the rise of a flux rope suggests that the eruption was triggered by the inner tether-cutting reconnection, but not the external breakout reconnection. An impulsive acceleration revealed from fast separation of the H{\alpha} ribbons of the first 150 seconds suggests the CME accelerated in the inner corona, which is consistent with the temporal profile of the reconnection electric field. In conclusion, we propose a qualitative model in view of framework of a solar eruption involving, mass ejections, filament eruption, CME, and subsequent flare.Comment: 8 figures, accepted for publication in Solar Physic

    Observations of Coronal Mass Ejections with the Coronal Multichannel Polarimeter

    Full text link
    The Coronal Multichannel Polarimeter (CoMP) measures not only the polarization of coronal emission, but also the full radiance profiles of coronal emission lines. For the first time, CoMP observations provide high-cadence image sequences of the coronal line intensity, Doppler shift and line width simultaneously in a large field of view. By studying the Doppler shift and line width we may explore more of the physical processes of CME initiation and propagation. Here we identify a list of CMEs observed by CoMP and present the first results of these observations. Our preliminary analysis shows that CMEs are usually associated with greatly increased Doppler shift and enhanced line width. These new observations provide not only valuable information to constrain CME models and probe various processes during the initial propagation of CMEs in the low corona, but also offer a possible cost-effective and low-risk means of space weather monitoring.Comment: 6 figures. Will appear in the special issue of Coronal Magnetism, Sol. Phy

    On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode

    Full text link
    A major, albeit serendipitous, discovery of the SOlar and Heliospheric Observatory mission was the observation by the Extreme Ultraviolet Telescope (EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating over a significant fraction of the Sun's surface. These so-called EIT or EUV waves are associated with eruptive phenomena and have been studied intensely. However, their wave nature has been challenged by non-wave (or pseudo-wave) interpretations and the subject remains under debate. A string of recent solar missions has provided a wealth of detailed EUV observations of these waves bringing us closer to resolving their nature. With this review, we gather the current state-of-art knowledge in the field and synthesize it into a picture of an EUV wave driven by the lateral expansion of the CME. This picture can account for both wave and pseudo-wave interpretations of the observations, thus resolving the controversy over the nature of EUV waves to a large degree but not completely. We close with a discussion of several remaining open questions in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for publicatio

    Measurements of Direct CP Violation, CPT Symmetry, and Other Parameters in the Neutral Kaon System

    Full text link
    We present a series of measurements based on K -> pi+pi- and K -> pi0pi0 decays collected in 1996-1997 by the KTeV experiment (E832) at Fermilab. We compare these four K -> pipi decay rates to measure the direct CP violation parameter Re(e'/e) = (20.7 +- 2.8) x 10^-4. We also test CPT symmetry by measuring the relative phase between the CP violating and CP conserving decay amplitudes for K->pi+pi- (phi+-) and for K -> pi0pi0 (phi00). We find the difference between the relative phases to be Delta-phi = phi00 - phi+- = (+0.39 +- 0.50) degrees and the deviation of phi+- from the superweak phase to be phi+- - phi_SW =(+0.61 +- 1.19) degrees; both results are consistent with CPT symmetry. In addition, we present new measurements of the KL-KS mass difference and KS lifetime: Delta-m = (5261 +- 15) x 10^6 hbar/s and tauS = (89.65 +- 0.07) x 10^-12 s.Comment: Submitted to Phys. Rev. D, August 6, 2002; 37 pages, 32 figure

    A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1

    Full text link
    We have carried out a high statistics (2 Billion events) search for ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3 and Hercules X-1. Using data taken with the CASA-MIA detector over a five year period (1990-1995), we find no evidence for steady emission from either source at energies above 115 TeV. The derived upper limits on such emission are more than two orders of magnitude lower than earlier claimed detections. We also find no evidence for neutral particle or gamma-ray emission from either source on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of large radio flares. Unless one postulates that these sources were very active earlier and are now dormant, the limits presented here put into question the earlier results, and highlight the difficulties that possible future experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published in Physical Review
    corecore