1,778 research outputs found

    The Firm as a Community Explaining Asymmetric Behavior and Downward Rigidity of Wages

    Get PDF
    This paper models the firm as a community à la Akerlof (1980) to account for asymmetric behavior, and in particular, downward rigidity of wages. It is shown that, through social interaction among workers in the firm community, wage cuts can give rise to a large, discontinuous fall in labor productivity (known as “catastrophe”). Furthermore, this large fall in labor productivity will persist or display inertia (known as “hysteresis”) even if the wages are restored to the pre-cut level and beyond. Our catastrophe/hysteresis finding with respect to wage cuts can rationalize the downward rigidity of wage behavior, and is consistent with the interview evidence of fragile worker morale emphasized by Bewley (1999) and others in explaining why employers are sensitive to and refrain from cutting worker pay.Wage rigidity, Firm community, Catastrophe, Hysteresis

    Receiprocity and Downward Wage Rigidity

    Get PDF
    The employment relationship is to a large extent characterized by incomplete contracts, in which workers have a considerable degree of discretion over the choice of their work effort. This discretion at work kicks in the potential importance of “gift exchange” or reciprocity between workers and employers in their employment relationship. Built on the seminal work of Akerlof (1980), this paper adopts a social norm approach to model reciprocity in labor markets and theoretically derives two versions of downward wage rigidity. The first version explains why employers may adopt a high wage policy far above the competitive level. This version is not a novel finding in the existing literature and is mainly served as a benchmark for later comparison in the current paper. Our main contribution lies in the second version in which not nly may employers adopt a high wage policy far above the competitive level, but one can also account for the asymmetric behavior of wages and explain why employers are hesitant about wage cuts in the presence of negative shocks. We argue that this second and stronger version of downward wage rigidity has moved the efficiency wage theory a step forward.Reciprocity, Downward Wage Rigidity, Social Norm, Efficiency Wage

    Investigating worn surfaces of nanoscale TiAlN/VN multilayer coating using FIB and TEM

    Get PDF
    TiAlN/VN multilayer coatings exhibit excellent dry sliding wear resistance and low friction coefficient, believed to be associated with the formation of tribo-films comprising MagnĂ©li phases such as V2O5. In order to investigate this hypothesis, dry sliding wear of TiAlN/VN coatings was undertaken against Al2O3. Focused ion beam was used to generate site-specific TEM specimens. A thin (2-20nm) tribo-film was observed at the worn surface, with occasional 'roll-like' wear debris (φ 5-40nm). Both were amorphous and contained the same Ti, Al and V ratio as the coating, but with the nitrogen largely replaced by oxygen. No evidence of MagnĂ©li phases was found. © 2006 IOP Publishing Ltd

    Singlet-triplet transitions in highly correlated nanowire quantum dots

    Full text link
    We consider a quantum dot embedded in a three-dimensional nanowire with tunable aspect ratio a. A configuration interaction theory is developed to calculate the energy spectra of the finite 1D quantum dot systems charged with two electrons in the presence of magnetic fields B along the wire axis. Fruitful singlet-triplet transition behaviors are revealed and explained in terms of the competing exchange interaction, correlation interaction, and spin Zeeman energy. In the high aspect ratio regime, the singlet-triplet transitions are shown designable by tuning the parameters a and B. The transitions also manifest the highly correlated nature of long nanowire quantum dots.Comment: 4 pages, 4 figure

    Maximizing the Total Resolution of Graphs

    Full text link
    A major factor affecting the readability of a graph drawing is its resolution. In the graph drawing literature, the resolution of a drawing is either measured based on the angles formed by consecutive edges incident to a common node (angular resolution) or by the angles formed at edge crossings (crossing resolution). In this paper, we evaluate both by introducing the notion of "total resolution", that is, the minimum of the angular and crossing resolution. To the best of our knowledge, this is the first time where the problem of maximizing the total resolution of a drawing is studied. The main contribution of the paper consists of drawings of asymptotically optimal total resolution for complete graphs (circular drawings) and for complete bipartite graphs (2-layered drawings). In addition, we present and experimentally evaluate a force-directed based algorithm that constructs drawings of large total resolution

    High-throughput avian molecular sexing by SYBR green-based real-time PCR combined with melting curve analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Combination of <it>CHD </it>(chromo-helicase-DNA binding protein)-specific polymerase chain reaction (PCR) with electrophoresis (PCR/electrophoresis) is the most common avian molecular sexing technique but it is lab-intensive and gel-required. Gender determination often fails when the difference in length between the PCR products of <it>CHD-Z </it>and <it>CHD-W </it>genes is too short to be resolved.</p> <p>Results</p> <p>Here, we are the first to introduce a PCR-melting curve analysis (PCR/MCA) to identify the gender of birds by genomic DNA, which is gel-free, quick, and inexpensive. <it>Spilornis cheela hoya </it>(<it>S. c. hoya</it>) and <it>Pycnonotus sinensis </it>(<it>P. sinensis</it>) were used to illustrate this novel molecular sexing technique. The difference in the length of <it>CHD </it>genes in <it>S. c. hoya </it>and <it>P. sinensis </it>is 13-, and 52-bp, respectively. Using Griffiths' P2/P8 primers, molecular sexing failed both in PCR/electrophoresis of <it>S. c. hoya </it>and in PCR/MCA of <it>S. c. hoya </it>and <it>P. sinensis</it>. In contrast, we redesigned sex-specific primers to yield 185- and 112-bp PCR products for the <it>CHD-Z </it>and <it>CHD-W </it>genes of <it>S. c. hoya</it>, respectively, using PCR/MCA. Using this specific primer set, at least 13 samples of <it>S. c. hoya </it>were examined simultaneously and the Tm peaks of <it>CHD-Z </it>and <it>CHD-W </it>PCR products were distinguished.</p> <p>Conclusion</p> <p>In this study, we introduced a high-throughput avian molecular sexing technique and successfully applied it to two species. This new method holds a great potential for use in high throughput sexing of other avian species, as well.</p

    A Co-axial Multi-tube Heat Exchanger Applicable for a Geothermal ORC Power Plant

    Get PDF
    AbstractThe study proposes a Co-axial multi-tube heat exchanger (CMTHE) applicable to geothermal heat extraction. The heat exchanger is integrated with a 50kW geothermal ORC power plant having a working fluid of R-245fa. Two field tests were performed to examine the system response of the ORC system subject to change of CMTHE. In case 1 where the flow rate in the shell-side of CMTHE is maintained, the pressure variation in the shell-side of CMTHE casts minor variations on heat extraction, ORC power generation, and ORC efficiency during the transient. Moreover, the effect of pressure has barely any influence of the final states of heat extraction, ORC power generation, and ORC efficiency. In case 2 where the pressure is preserved in the CMTHE, it is found that a decrease of flow rate in the CMTHE results in degradation of heat extraction, ORC power generation and ORC system efficiency. On the contrary, increasing the flow rate in the CMTHE leads to a rise of heat extraction, ORC power generation and ORC system efficiency. Unlike that in case 1, the effect of flow rate has a detectable effect on the final states of heat extraction, ORC power generation, and ORC efficiency

    Word matching using single closed contours for indexing handwritten historical documents

    Get PDF
    Effective indexing is crucial for providing convenient access to scanned versions of large collections of historically valuable handwritten manuscripts. Since traditional handwriting recognizers based on optical character recognition (OCR) do not perform well on historical documents, recently a holistic word recognition approach has gained in popularity as an attractive and more straightforward solution (Lavrenko et al. in proc. document Image Analysis for Libraries (DIAL’04), pp. 278–287, 2004). Such techniques attempt to recognize words based on scalar and profile-based features extracted from whole word images. In this paper, we propose a new approach to holistic word recognition for historical handwritten manuscripts based on matching word contours instead of whole images or word profiles. The new method consists of robust extraction of closed word contours and the application of an elastic contour matching technique proposed originally for general shapes (Adamek and O’Connor in IEEE Trans Circuits Syst Video Technol 5:2004). We demonstrate that multiscale contour-based descriptors can effectively capture intrinsic word features avoiding any segmentation of words into smaller subunits. Our experiments show a recognition accuracy of 83%, which considerably exceeds the performance of other systems reported in the literature

    Dynamic modeling and tracking control of a nonholonomic wheeled mobile manipulator with dual arms

    Get PDF
    This paper presents methodologies for dynamic modeling and trajectory tracking of a nonholonomic wheeled mobile manipulator (WMM) with dual arms. The complete dynamic model of such a manipulator is easily established using the Lagrange's equation and MATHEMATICA. The structural properties of the overall system along with its subsystems are also well investigated and then exploited in further controller synthesis. The derived model is shown valid by reducing it to agree well with the mobile platform model. In order to solve the path tracking control problem of the wheeled mobile manipulator, a novel kinematic control scheme is proposed to deal with the nonholonomic constraints. With the backstepping technique and the filtered-error method, the nonlinear tracking control laws for the mobile manipulator system are constructed based on the Lyapunov stability theory. The proposed control scheme not only achieves simultaneous trajectory and velocity tracking, but also compensates for the dynamic interactions caused by the motions of the mobile platform and the two onboard manipulators. Simulation results are performed to illustrate the efficacy of the proposed control strategy
    • 

    corecore