764 research outputs found

    Sequential optimization for efficient high-quality object proposal generation

    Full text link
    We are motivated by the need for a generic object proposal generation algorithm which achieves good balance between object detection recall, proposal localization quality and computational efficiency. We propose a novel object proposal algorithm, BING ++, which inherits the virtue of good computational efficiency of BING [1] but significantly improves its proposal localization quality. At high level we formulate the problem of object proposal generation from a novel probabilistic perspective, based on which our BING++ manages to improve the localization quality by employing edges and segments to estimate object boundaries and update the proposals sequentially. We propose learning the parameters efficiently by searching for approximate solutions in a quantized parameter space for complexity reduction. We demonstrate the generalization of BING++ with the same fixed parameters across different object classes and datasets. Empirically our BING++ can run at half speed of BING on CPU, but significantly improve the localization quality by 18.5 and 16.7 percent on both VOC2007 and Microhsoft COCO datasets, respectively. Compared with other state-of-the-art approaches, BING++ can achieve comparable performance, but run significantly faster

    Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization, and cost-benefit analysis

    Get PDF
    The management and disposal of livestock manure has become one of the top environmental issues at a global scale in line with the tremendous growth of poultry industry over the past decades. In this work, a potential alternative method for the disposal of chicken manure from Singapore local hen layer farms was studied. Gasification was proposed as the green technology to convert chicken manure into clean energy. Through gasification experiments in a 10 kW fixed bed downdraft gasifier, it was found that chicken manure was indeed a compatible feedstock for gasification in the presence of wood waste. The co-gasification of 30 wt% chicken manure and 70 wt% wood waste produced syngas of comparable quality to that of gasification of pure wood waste, with a syngas lower heating value (LHV) of 5.23 MJ/Nm3 and 4.68 MJ/Nm3, respectively. Furthermore, the capability of the gasification derived biochar in the removal of an emerging contaminant (artificial sweetener such as Acesulfame, Saccharin and Cyclamate) via adsorption was also conducted in the second part of this study. The results showed that the biochar was effective in the removal of the contaminant and the mechanism of adsorption of artificial sweetener by biochar was postulated to be likely via electrostatic interaction as well as specific interaction. Finally, we conducted a cost-benefit analysis for the deployment of a gasification system in a hen layer farm using a Monte Carlo simulation model

    Sequential Optimization for Efficient High-Quality Object Proposal Generation

    Full text link
    We are motivated by the need for a generic object proposal generation algorithm which achieves good balance between object detection recall, proposal localization quality and computational efficiency. We propose a novel object proposal algorithm, BING++, which inherits the virtue of good computational efficiency of BING but significantly improves its proposal localization quality. At high level we formulate the problem of object proposal generation from a novel probabilistic perspective, based on which our BING++ manages to improve the localization quality by employing edges and segments to estimate object boundaries and update the proposals sequentially. We propose learning the parameters efficiently by searching for approximate solutions in a quantized parameter space for complexity reduction. We demonstrate the generalization of BING++ with the same fixed parameters across different object classes and datasets. Empirically our BING++ can run at half speed of BING on CPU, but significantly improve the localization quality by 18.5% and 16.7% on both VOC2007 and Microhsoft COCO datasets, respectively. Compared with other state-of-the-art approaches, BING++ can achieve comparable performance, but run significantly faster.Comment: Accepted by TPAM

    Light induced non-volatile switching of superconductivity in single layer FeSe on SrTiO3 substrate

    Get PDF
    The capability of controlling superconductivity by light is highly desirable for active quantum device applications. Since superconductors rarely exhibit strong photoresponses, and optically sensitive materials are often not superconducting, efficient coupling between these two characters can be very challenging in a single material. Here we show that, in FeSe/SrTiO3 heterostructures, the superconducting transition temperature in FeSe monolayer can be effectively raised by the interband photoexcitations in the SrTiO3substrate. Attributed to a light induced metastable polar distortion uniquely enabled by the FeSe/SrTiO3 interface, this effect only requires a less than 50 µW cm−2 continuous-wave light field. The fast optical generation of superconducting zero resistance state is non-volatile but can be rapidly reversed by applying voltage pulses to the back of SrTiO3substrate. The capability of switching FeSe repeatedly and reliably between normal and superconducting states demonstrate the great potential of making energy-efficient quantum optoelectronics at designed correlated interfaces

    Observation of Full-Parameter Jones Matrix in Bilayer Metasurface

    Full text link
    Metasurfaces, artificial 2D structures, have been widely used for the design of various functionalities in optics. Jones matrix, a 2*2 matrix with eight parameters, provides the most complete characterization of the metasurface structures in linear optics, and the number of free parameters (i.e., degrees of freedom, DOFs) in the Jones matrix determines the limit to what functionalities we can realize. Great efforts have been made to continuously expand the number of DOFs, and a maximal number of six has been achieved recently. However, the realization of 'holy grail' goal with eight DOFs (full free parameters) has been proven as a great challenge so far. Here, we show that by cascading two layer metasurfaces and utilizing the gradient descent optimization algorithm, a spatially varying Jones matrix with eight DOFs is constructed and verified numerically and experimentally in optical frequencies. Such ultimate control unlocks new opportunities to design optical functionalities that are unattainable with previously known methodologies and may find wide potential applications in optical fields.Comment: 53 paegs, 4 figure

    Indian monsoon variability on millennial-orbital timescales

    Get PDF
    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ18O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ18O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales

    Multipath estimation based on modified ε-constrained rank-based differential evolution with minimum error entropy

    Get PDF
    Multipath is one of the dominant error sources for high-precision positioning systems, such as global navigation satellite systems (GNSS). The minimum mean square error (MSE) criterion is usually employed for multipath estimation under the assumption of Gaussian noise. For non-Gaussian noise as appeared in most practical applications, alternative solutions are required for multipath estimation. In this work, a multipath estimation algorithm is proposed based on the minimum error entropy (MEE) criterion under Gaussian or non-Gaussian noises. A key advantage of using MEE is that it can minimize the randomness of error signals, however, the shift-invariance characteristics in MEE may lead to a bias of the estimation result. To mitigate such a bias, an improved estimation strategy is proposed by integrating the second-order central moment of the estimation error together with the prior information of multipath parameters as a constraint. The multipath estimation problem is thus formulated as a constrained optimization problem. A modified ε-constrained rank-based differential evolution (εRDE) algorithm is developed to find the optimal solution. The effectiveness of the proposed algorithm, in terms of reducing the multipath estimation error and minimizing the randomness in the error signal, has been examined through case studies with Gaussian and non-Gaussian noises

    Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years

    Get PDF
    The upper Hanjiang River region is the recharge area of the middle route of South-to-North Water Transfer Project. The region is under construction of the Hanjiang-Weihe River Water Transfer Project in China. Monsoon precipitation variations in this region are critical to water resource and security of China. In this study, high-resolution monsoon precipitation variations were reconstructed in the upper Hanjiang River region over the past 6650 years from delta O-18 and delta C-13 records of four stalagmites in Xianglong cave. The long term increasing trend of stalagmite delta O-18 record since the middle Holocene is consistent with other speleothem records from monsoonal China. This trend follows the gradually decreasing Northern Hemisphere summer insolation, which indicates that solar insolation may control the orbital-scale East Asian summer monsoon (EASM) variations. Despite the declined EASM intensity since the middle Holocene, local precipitation may not have decreased remarkably, as revealed by the delta C-13 records. A series of centennial- to decadal-scale cyclicity was observed, with quasi-millennium-, quasi-century-, 57-, 36- and 22-year cycles by removing the long-term trend of stalagmite delta O-18 record. Increased monsoon precipitation during periods of 4390-3800 a BP, 3590-2960 a BP, 2050-1670 a BP and 1110-790 a BP had caused four super-floods in the upper reach of Hanjiang River. Dramatically dry climate existed in this region during the 5.0 ka and 2.8 ka events, coinciding with notable droughts in other regions of monsoonal China. Remarkably intensified and southward Westerly jet, together with weakened summer monsoon, may delay the onset of rainy seasons, resulting in synchronous decreasing of monsoon precipitation in China during the two events. During the 4.2 ka event and the Little Ice Age, the upper Hanjiang River region was wet, which was similar to the climate conditions in central and southern China, but was the opposite of drought observed in northern China. We propose that weakened summer monsoon and less strengthened or normal Westerly jet may cause rain belt stay longer in the southward region, which reduced rainfall in northern China but enhanced it in central and southern China. (C) 2017 Elsevier B.V. All rights reserved

    Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y

    Get PDF
    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; A speleothem &delta;18O record from Xiaobailong cave in southwest China characterizes changes in summer monsoon precipitation in Northeastern India, the Himalayan foothills, Bangladesh, and northern Indochina over the last 252 kyr. This record is dominated by 23-kyr precessional cycles punctuated by prominent millennial-scale oscillations that are synchronous with Heinrich events in the North Atlantic. It also shows clear glacial&ndash;interglacial variations that are consistent with marine and other terrestrial proxies but are different from the cave records in East China. Corroborated by isotope-enabled global circulation modeling, we hypothesize that this disparity reflects differing changes in atmospheric circulation and moisture trajectories associated with climate forcing as well as with associated topographic changes during glacial periods, in particular redistribution of air mass above the growing ice sheets and the exposure of the &ldquo;land bridge&rdquo; in the Maritime continents in the western equatorial Pacific.</p
    corecore