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ABSTRACT Multipath is one of the dominant error sources for high-precision positioning systems, such as 

global navigation satellite systems (GNSS). The minimum mean square error (MSE) criterion is usually 

employed for multipath estimation under the assumption of Gaussian noise. For non-Gaussian noise as 

appeared in most practical applications, alternative solutions are required for multipath estimation. In this 

work, a multipath estimation algorithm is proposed based on the minimum error entropy (MEE) criterion 

under Gaussian or non-Gaussian noises. A key advantage of using MEE is that it can minimize the 

randomness of error signals, however, the shift-invariance characteristics in MEE may lead to a bias of the 

estimation result. To mitigate such a bias, an improved estimation strategy is proposed by integrating the 

second-order central moment of the estimation error together with the prior information of multipath 

parameters as a constraint. The multipath estimation problem is thus formulated as a constrained optimization 

problem. A modified İ-constrained rank-based differential evolution (İRDE) algorithm is developed to find 

the optimal solution. The effectiveness of the proposed algorithm, in terms of reducing the multipath 

estimation error and minimizing the randomness in the error signal, has been examined through case studies 

with Gaussian and non-Gaussian noises. 

INDEX TERMS Multipath estimation, constrained optimization, mean square error (MSE), minimum error 

entropy (MEE), İ- constrained rank-based differential evolution (İRDE). 

I. INTRODUCTION 

Multipath, the delayed replica of direct signal caused by the 

reflection of buildings, hills and other obstacles, cannot be 

eliminated by differential techniques due to the irrelevancy 

between different instants and the uncertain occurrence 

along the observation period. Thus, multipath has become 

one of the dominant error sources degrading the positioning 

accuracy in differential positioning systems [1-3]. In the 

presence of multipath, the direct signal and the multipath 

signal contained in the composite signal, tracked by a 

receiver, cannot be distinguished from each other. As a result, 

an error arises, which is known as multipath error.  

Various methods have been developed to mitigate the 

multipath error, such as the antenna techniques in front, the 

correlator and discriminator-based methods in delay lock 

loop (DLL), and the data processing methods [4-14]. In 

recent years, more interest has been put to eliminating 

multipath error via data processing based methods, in which 

the multipath elimination problem is converted into a 

parameter estimation problem [9]. Examples include the 

method based on maximum likelihood estimation (MLE) [6], 

the multipath super resolution algorithm based on iterative 

least squares (ILS) [11], the multipath estimation method 

based on extended Kalman filter (EKF) [12]. Among these 

algorithms, the mean square error (MSE) criterion is 

normally employed for multipath estimation. With an MSE 

criterion, the mean and the variance are the two parameters 

used to characterize multipath estimation results. MSE is a 

suitable criterion for linear systems with Gaussian noise 
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since the statistical property of the target state can be fully 

determined by the two parameters [13]. Other algorithms 

developed on data processing, such as the multipath 

interference mitigation algorithm based on WRELAX, the 

methods based on spatial domain decoupled parameter 

estimation theory, are also used to mitigate multipath error, 

and the performance of these algorithms are 

comprehensively analyzed in [14]. However, only Gaussian 

noises are considered in these algorithms. 

For systems with non-Gaussian noise, the estimation 

performance of the aforementioned algorithms is likely to 

deteriorate since higher order statistical properties are often 

required to describe the non-Gaussian characteristics of the 

target state. The estimation performance can also degrade 

even for Gaussian noise if the system is non-linear because 

the target state variable may not be Gaussian distributed due 

to the system nonlinearity [15]. Thus, considering only the 

mean and variance would be insufficient in characterizing 

nonlinear and/or non-Gaussian processes.  

A target state can be fully characterized by the shape of its 

probability density function (PDF). In this regard, it is 

beneficial to consider the entire PDF of the state rather than 

its low order moments [16]. The particle filter (PF) 

algorithms have been used for multipath estimation for its 

applications to general noise situations [17]. Here the PF is 

in principle a Bayesian estimation for a given measurement 

sequence. It can also be taken as a PDF estimation since a 

number of particles are used to represent the distribution of 

the state. However, the problems of sample degeneration and 

impoverishment restrict the applications of PF algorithms 

[18].  

The PDF-shaping control methodology has been 

developed and applied to control systems with non-Gaussian 

noise and nonlinear dynamics [19, 20]. An alternative 

measure for general non-Gaussian systems is the entropy, 

which is a scalar quantity in information theory that 

quantifies the average uncertainty involved in a random 

variable [21]. Entropy can be used to depict the higher-order 

statistics of a distribution since it is formulated on the PDF. 

The use of entropy is not limited to Gaussian assumption. 

Thus, the so-called minimum error entropy (MEE) criterion 

has been employed in many stochastic distribution control 

problems [22-24].  

The MEE criterion is a shift-invariant measure, which 

means the mean of the error can be a non-zero value even 

when the entropy measure is minimized. To deal with this 

problem, a constraint on zero mean of the estimation error is 

added to the MEE performance index in some algorithms [15, 

25]. In our previous work, an algorithm based on the central 

error entropy criterion (CEEC) is proposed for multipath 

estimation [26], which can reduce the mean error but appears 

to be sensitive to the initial states and the initial gain matrix 

in the filter design. With the MEE-based state estimation 

methods, it is usually assumed that the noise PDF is known, 

which could be impractical for many applications [22]. 

Several data-driven methods have been developed for 

systems with unknown noise PDF [23, 24].  

Stochastic information gradient (SIG) method is often 

applied to update the filter gain in the design of a sub-optimal 

estimator. The drawbacks of using SIG are considered as 

follows. (1) It cannot guarantee a global optimum result. (2) 

Partial derivative operations are required in implementing 

the searching, which is not a trivial task numerically, 

especially for high-dimension systems [27].  

In this work, the performance index of MEE is taken as 

the objective function. The second-order central moment of 

the estimation error, together with the prior parameter 

information, is formed as a constraint. The prior parameter 

information is often used in EKF-based or PF-based methods 

for generation of the initial state. In this new algorithm, the 

prior information is considered in the constraints rather than 

in the objective function as in [15]. As such, the multipath 

estimation is formulated as a constrained optimization 

problem. An intelligent optimization algorithm, instead of a 

SIG-based method, is tailored to find the global optimum. 

This makes a novel contribution to multipath estimation for 

general stochastic systems.  

The remainder of this paper is organized as follows. The 

signal model and the system model in multipath environments 

are introduced in Section II. In Section III, the multipath 

estimation problem is formulated as a constrained 

optimization problem. A modified recursive İ-constrained 

rank-based differential evolution (İRDE) algorithm is 

developed to find the optimum solution in Section IV. 

Simulation studies for single multipath and two multipaths 

cases with Gaussian and non-Gaussian noises are reported in 

Section V. Conclusions and the future work are discussed in 

Section VI. 

II. PROBLEM FORMULATION 

For the convenience of reading, notations used in this paper 

are defined in Table I. For a variable x , we use x  to 

represent its prediction and x̂  to represent the estimation or 

the filter result. 
TABLE I 

NOTATIONS 

Symbol Description 

( )⋅A , ( )⋅B  system matrix, measurement matrix 

( )f ⋅  probability function 

( )jg ⋅ , ( )jh ⋅  inequality constraint, equality constraint 

( )2H ⋅  second-order Renyi’s entropy 

( )δκ ⋅ , ( )G ⋅Ȉ  Kernel function, multi-dimensional Kernel function 

( )kJ ⋅
 

objective function 

( )kV ⋅  information potential 

( )r ⋅ , ( )dr ⋅ ,

( )mr ⋅  

received base-band signal, direct signal, multipath 

signal 

n noise term in signal 

( )R ⋅  ideal autocorrelation function 

( )ε ⋅
 

violation level 

kx , ,k px  parameter vector, p-th individual generated from 

the state space 
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ky  , s

k
y , 

,k py  measurement vector, the s-th element of ky , the p-

th realization of ky  

e 
k k−e = y y  

Ȉ  Kernel parameter matrix 

0,kα
, ,m kα  direct signal amplitude, m-th multipath amplitude 

0,kl ,
,m kl  time delays of the direct signal and the m-th 

multipath 

0,kθ ,
,m kθ  direct signal phase, m-th multipath time delay 

relative to the direct signal 

pϕ
 constraint of the p-th individual 

0.kA ,
.m kA  composite amplitudes of the direct signal and the m-

th multipath 

s
d

 spacing between the s-th correlator and the punctual 

correlator 

M multipath number 

S correlator number ௖ܶ௢௡, ܿ݌ parameters in modified İRDE algorithm ߜ௦ଶ variance of the s-th element in e 

pN , W  population size, length of the Parzen window 

pF ,
pCR ,

maxEF  

scale factor, crossover rate, maximum evolution 

number 

A. SIGNAL DESCRIPTION 

In a global navigation satellite system (GNSS), the received 

signal in the presence of multipath, ݎ(݅), can be described by 

an ( 1M + )- path model composed of a direct path signal, 

( )dr i , and the M  reflected signals, ( )mr i , plus the noise 

term ( )n i . Assume that the frequency tracking has been 

realized by a frequency lock loop, then, the corresponding 

base-band signal at an in-phase channel at instant i can be 

modeled as   

( ) ( ) ( )
( )

( ) ( )
( )

( )
d

m

0, 0, 0,

, 0, , 0, ,

1

- cos

- - cos

k k k

r i
M

m k k m k k m k

m

r i

r i c i l

c i l l n i

α θ

α θ θ
=

=

+ + +∑





      (1) 

where ߙ଴,௞  and ߙ௠,௞  are the amplitude of the direct signal 

and the amplitude of the m-th multipath reflected signal. ݈଴,௞  

and ݈௠.௞  are time delays of the direct signal and the m-th 

multipath signal. ܿ(݅ െ ݈଴,௞)  and ܿ(݅ െ ݈଴,௞ െ ݈௠,௞)  are the 

pseudo code with delay ݈଴,௞  and (݈଴,௞ െ ݈௠,௞)  .  ߠ଴,௞ and ߠ௠,௞ 

are direct signal phase and the m-th multipath time delay 

relative to the direct signal. The signal model in (1) is a 

simplified version of the model adopted in [28] and more 

details can be found in [29]. For the model in this work, the 

real part of the complex base-band signal is obtained from 

the in-phase channels as in [30], and the imaginary part can 

be obtained through orthogonal channels.  

    Although there are some other signal models, for example, 

the multipath model in urban canyon [31], which mainly 

concerns the multipath caused by the motion of satellite, we 

still adopt the model expressed by (1) not only because it’s 

widely used but also because the multipath caused by the 

motion of satellite can also be described by (1) as well as the 

motion of receiver. 

B. SYSTEM MODEL 

The initial values of 0,
ˆ

k
l , 0,0l̂ , can be obtained from the 

capture stage. The structure of signal tracking in GNSS is 

shown in Fig. 1. The measurement vector, 
T

1 2, , , S

k k k k
y y y=   y  , can be obtained by correlating the 

received signal, ( )r i , with the local C/A code vector over 

the measurement period. d  is the correlator spacing vector 

with [ ]T1 2, , ,
s

d d d= d , s=1, 2, …, S, S is the correlator 

number. ( )0,
ˆ

k s
c i l d− +  is the s-th local code, 0

s
d >  

corresponds to the early code, 0
s

d <  corresponds to the late 

code and 0
s

d =  refers to the punctual code. 

 

FIGURE 1.  Structure of signal tracking scheme 

 
The multipath parameters to be estimated can be grouped 

into a vector as  
T

0, 1, , 0, 1, , 0, 1, ,, , , , , , , , , , ,
k k k M k k k M k k k M k

l l lα α α θ θ θ =    x .
 

k
x   can be estimated according to 

k
y   if enough correlator 

outputs are available [28]. Then, the multipath part, ( )mr k , 

can be reconstructed according to the estimate of 
k

x , and the 

direct signal can be obtained by subtracting the multipath 

part from the received signal. The estimated time delay at the 

next observation period, 
0, 1
ˆ

k
l + , can then be calculated so as 

to tune the local code generator to synchronize the punctual 

code with the received signal. 

The relationship between the i-th instant corresponding to 

one sample interval 
sT   and the k-th measurement 

corresponding to one measurement period 
oT  can be 

illustrated in Fig. 2.  

 

FIGURE 2.  The relationship between the i-th instant and the k-th 
measurement 
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The output of the s-th correlator in Fig. 1 is  

( )

( ) ( )

( ) ( )
( )

o s

0, , 0, ,

0,

/ 1o s

0, , ,

1

, , , ,

1 ˆ
/

k

k

k

s

k m k k m k

kK

k s

i kK T T

M

k k s m k k m k s k

m

y A A l l

r i c i l d
T T

A R d A R l d nγ γ

= − +

=

,

= ⋅ − +

= − + − − +

∑

∑

 




x

B x

 (2)  

where
0, 0,
ˆ

k k k
l lγ = −  , ( )0, 0, 0,cos

k k k
A α θ=   and 

( ), , 0, ,cos
m k m k k m k

A α θ θ=+  . 
o sK T T=  . ( )⋅B   is the 

measurement matrix with the following form. 

( ) ( ) ( )0, , ,

1

M

k k k s m k k m k s

m

A R d A R l dγ γ
=

= − + − −∑B x       (3) 

( )R ⋅  is the ideal autocorrelation function with the following 

form.  

( ) ( ) ( )
o so s

0, 0,

/ 1

c

1

/

1 , 1

0, otherwise

ˆ
kK

k k k

i kK T T

k k

R c
T T

T

i l c i lγ

γ γ

= − +

=

− ≤
≈

− ⋅ −





∑
          (4) 

where 
cT  =1/1023 ms for GPS signal, 1023 is the number of 

C/A code chips in a period.  

It can be seen from (2) that the parameters to be estimated 

at the k-th measurement are grouped into 
T

0, 1, , 0, 1, ,, , , , , , ,
k k k M k k k M k

A A A l l l=    x  

based on the assumption that the phase delay is not changed 

during the observation period, and the phase estimation can 

be obtained as in [30]. Here 

( )Q I

0, , ,arctan
k m k m k

A Aθ =                          (5) 

where 
I

,m k
A  and 

Q

,m k
A  are the estimated amplitudes from the 

in-phase channels and the quadrature channels.   

Assume 
k

x  can be formulated as a first-order Markov 

process, i.e. 

( )1k k k−= +x A x w                                 (6) 

( )k k k
= +y B x v                                  (7) 

where 
1D

k

×∈x   denotes the state vectors, ( )2 1D M= + . 

k
w  is assumed to be Gaussian distributed noise with zero 

mean and the covariance matrix Q. 
1S

k

×∈y  is the 

measurement vector with 
T

1 2, , , S

k k k k
y y y =  y   and 

s

k
y is 

obtained according to (2). 
k

v is the measurement noise with 

zero mean and it can be Gaussian distributed or non-

Gaussian distributed. A and B are system matrix and 

measurement matrix of appropriate dimensions. 

In this work, it is aimed to recursively estimate k
x  

according to the observation vector, k
y . Here, ( )k k= B xy , 

k
x  is the prediction result of k

x  that can be obtained from 

(6) by setting an initial state. The prediction of k
y , rather 

than the filter result of k
y , is used to construct the 

measurement error. In this case the gain matrix appeared in 

traditional filter is not required. In fact, k k k= −e y y , which 

is called innovation in Kalman filter-based methods, is used 

to update the filter result, ˆ
k

x , in the sense of the MEE and 

the constraint. 

The main idea is to update the filter result using an 

intelligent algorithm. Then, the above estimation problem 

can be formulated as an optimization problem with the MEE 

criterion. The prior information of multipath and other useful 

information can be combined as constraints. The structure of 

this estimation strategy is demonstrated in Fig. 3.  

 
FIGURE 3.  The structure of the estimator based on intelligent 
optimization algorithm 

 

If the range of k
x  is given according to the prior 

information of multipath, ௣ܰ  individuals can be generated 

uniformly distributed in this range and they are grouped as 

the initial population, 1, 2, ,
p

p N=  . , ,k p k pk= −e y y . p
f  

and p
ϕ  are the objective function and the constraint of the p-

th individual, respectively, which will be explained in 

Section III in detail. 

III. CONSTRAINED OPTIMIZATION PROBLEM OF 
MULTIPATH ESTIMATION 

In this section, the multipath estimation is formulated as a 

constrained optimization problem. The objective function, 

the constraint and the boundary conditions are discussed. 

A. OBJECTIVE FUNCTION DESIGN 

Entropy is an index to measure uncertainty and randomness 

of a general stochastic variable. The MEE estimation aims to 

minimize the entropy of the estimation error, and hence 

decrease the uncertainty in estimation. Assume a random 

variable e has PDF ( )f e , the second-order Renyi’s entropy 

is defined by [32]  

( ) ( )2

2 log dH e f e e= − ∫                              (8) 

For a vector e with S dimension, the kernel density 

estimation (KDE) can be used to estimate its PDF. Given a 

set of independent and identically distributed (i.i.d.) data, 

{ }
1

N

i i=
e , drawn from a distribution, the KDE of the PDF is 

( ) ( )
1

1ˆ
N

i

i

f G
N =

= −∑ Ȉe e e                               (9) 
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with N being the number of samples and Ȉ  the kernel 

parameter matrix. ( )i
G −Ȉ e e  is a multi-dimensional 

Gaussian function with the form as follows. 

( )
( ) ( )

( ) ( )T 11 1
exp

22 det
i i i

S
G

π
− − = − − − 

 
Ȉ e e e e Ȉ e e

Ȉ
 

(10) 

Ȉ  is assumed to be a diagonal matrix with the s-th diagonal 

element being the variance 
2

s
δ  for 

s
e  in e. 1−Ȉ is the inverse 

matrix of Ȉ  . A large number of experiments show that 

once 
2

s
δ  is larger than a certain value it has little influence 

on the estimation results. 

Using KDE, the Renyi’s quadratic entropy can be 

formulated as follows. 

( ) ( )

( ) ( )

( ) ( )

( )
( )

2

2

1

2
1 1

2
1 1

2 2
1 1

1
log d

1
log d

1
log d

1
log

= log

N

i

i

N N

i j

i j

N N

i j

i j

N N

i j

i j

H G
N

G G
N

G G
N

G
N

V

=

= =

= =

= =

 
= − − 

 
 

=− − − 
 

 
=− − − 

 
 

= − − 
 

−

∑∫

∑∑∫

∑∑∫

∑∑

Ȉ

Ȉ Ȉ

Ȉ Ȉ

Ȉ

e e e e

e e e e e

e e e e e

e e

e

  (11) 

where  

( ) ( )
22

1 1

1 N N

i j

i j

V G
N = =

 
=−  

 
∑∑ Ȉe e e                   (12) 

is called the information potential (IP) of e and
2 2=Ȉ Ȉ . 

Thus, minimizing the Renyi’s entropy, ( )2H e , is 

equivalent to maximizing the IP, ( )V e , because of the 

monotonic property of the ( )log ⋅  function. In order to 

reduce the calculation complexity, the instantaneous 

information potential, ( )k
V e , instead of ( )V e , is used, i.e., 

( ) ( )
2

1

1 N

ik k
i

V G
N =

 
 
 

=− ∑ Ȉe e e                       (13) 

The calculation of ( )k
V e  can be further simplified with the 

Parzen windowing technique as   

( ) ( )
2

1

1 k

ik k
i k W

V G
W = − +

 
 
 

=− ∑ Ȉe e e                    (14) 

where W is the length of the Parzen window.  

Given that 1 2, ,
S

e e e  are independent of each other, 

( )k
V e  can be written as 

( ) ( )

( )
2

2,

+1

+1 1

1

1
s

k

ik k
i k W

Sk
s s

ik
i k W s

V G
W

e e
W

δκ
= −

= − =

=−

=−

∑

∑ ∏

Ȉe e e

               (15) 

where ( ) ( ) ( )2 21 2 exp 2e eδκ π δ δ=  is a Gaussian kernel 

function. Thus, ( )k
V e  needs to be maximized in order to 

minimize the randomness of the estimation error. Then, the 

maximization problem can be transformed into a 

minimization problem by taking the following objective 

function. 

( ) ( )k kJ Ve = - e                                    (16) 

The objective function in (16) is used for multipath 

estimation. 

B. CONSTRAINTS 

Due to the shift-variant property of MEE, the following 

constraint is considered to minimize the mean error. 

( )min E Te e                                     (17) 

Here E(ή) is the expectation function. In order to reduce the 

calculation complexity, ( )E Te e  is calculated by the 

following statistical information  

      ( ) ( )T T

1

1
E

k

i i

i k W
W

= − +

= ∑e e e e
                 (18) 

where W is the same window length as in (15).  

In order to control the estimation accuracy, a threshold is 

introduced to convert (18) into an equality constraint. 

( )T

1

1
k

i i

i k W

threshold
W

= − +

=∑ e e
                (19) 

where the threshold is a small positive number, such as 

threshold=10-5. 

Remark 1 W samples are required for calculations in (18). 

The estimation results from the ( )1k W− + -th iteration to the 

k-th iteration need to be saved for further processing in the 

recursive procedure.  

The multipath signal is normally weaker than the direct 

signal since some signal power is lost due to reflection. This 

means the multipath amplitude is smaller than the direct 

signal amplitude, i.e. 

, 0,m k k
α α<                                     (20) 

with 1, 2, ,m M=  . 

Without loss of generality, the following assumption is 

made. The first multipath has the smallest relative time delay, 

the second multipath has a longer time delay compared to the 

first one, and so on, that is, 

, 1,m k m k
l l +<                                   (21) 

with 1m M+ ≤ . Then, the constraints known as the prior 

information are listed by (19), (20) and (21), which is 

consistent with that in [10].   

C. BOUNDARY CONDITIONS 

The boundary conditions are given according to the physical 

characteristics of multipath. Firstly, the direct signal 

amplitude and the multipath amplitude, 0,kα  and ,m k
α , are 

between 0 and 1 since they are normalized in the pre-

processing stage. Secondly, the estimation error in 

http://dict.youdao.com/search?q=diagonal&keyfrom=E2Ctranslation
http://dict.youdao.com/w/matrix/
http://dict.youdao.com/search?q=diagonal&keyfrom=E2Ctranslation
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acquisition process is usually less than 0.5
cT  [28], which 

yields 
c c0.5 0.5

k
T Tγ− ≤ ≤ . Thirdly, the multipath signal 

arrives after the direct signal because it must travel a longer 

distance over the propagation path, so the multipath time 

delay is longer than the direct signal time delay, i.e. 0
m

l ≥ . 

Only the short multipath with time delay of 
c0 2

m
l T≤ ≤  is 

considered since the multipath with longer time delay can be 

ignored owing to the autocorrelation properties of C/A code 

[30]. Accordingly, the boundary considerations can be given 

as 

0,0 1
k

α< ≤                                        (22) 

,0 1
m k

α< ≤                                       (23) 

c c0.5 0.5
k

T Tγ− ≤ ≤                                 (24) 

c0 2
m

l T≤ ≤                                      (25) 

In this way, the multipath estimation problem is converted 

into a constrained optimization problem with the objective 

function (18), the constrained conditions in (19) ~ (21), and 

the boundary conditions in (22) ~ (25). In this optimization 

problem, the state dimension is ( )2 1M + , the number of the 

equality constraint condition is one, and the number of the 

non-equality constraint conditions is 2M .  
In a two-stage estimation algorithm based on variable 

projection (VP) method, a constraint is used to improve the 

multipath mitigation performance [33], in which the VP 

method is designed to correct the pseudo-range error caused 

by multipath and the constraint is imposed on the multipath-

caused range error. Our algorithm in this work is proposed to 

estimate multipath parameters (multipath amplitude, 

multipath time delay and multipath phase delay) and the 

constraints are directly imposed on these parameters. In 

addition, the VP method is employed to suppress the 

multipath error after the initial pseudo range is obtained, 

therefore the proposed algorithm is able to eliminate the 

multipath error before the multipath influences the pseudo 

range. 

IV. MULTIPATH ESTIMATION BASED ON MODIFIED 
İRDE ALGORITHM 

The İRDE algorithm was initially proposed in [10] to solve 

constrained optimization problems with equality constraints. 

In this work, a modified İRDE algorithm is developed to solve 

the constrained optimization problem for multipath estimation. 

A. CONSTRAINED OPTIMIZATION PROBLEM 

A typical constrained optimization problem can be described 

as follows [10]. 

        Minimize ( )( )J x   

Subject to 

( )
( ) c

0, 1, ,

0, 1, ,

, 1, ,

j

j

t t t

g j n

h j n J

L x U t D

≤ =
 = = +
 ≤ ≤ =

x

x





                (26) 

where ( )1 2, , ,
D

x x x=x   is a D-dimension vector. ( )J x  is 

an objective function. ( ) 0
i

g ≤x  and ( ) 0
j

h =x  are q 

inequality constraints and 
cJ n−  equality constraints, 

respectively. ( )J ⋅ , ( )j
g ⋅ , ( )j

h ⋅  are linear or nonlinear 

real-valued functions. 
t

L  and 
t

U  are the lower and upper 

bounds of 
t

x .
t

L  and 
t

U  are chosen according to the prior 

information of a particular problem. In this paper, 
t

L  and 

t
U  are set according to the boundary condition in (22) ~ (25). 

The feasible solution space in which every point can meet 

all constraints is denoted by π, and the searching space 

defined by the upper and lower bounds is denoted by Ş. 

Apparently, π⊆ Ş. 

In the İ-constrained method, the constraint violation, 

( )ϕ x , can be given by the following formula [10]. 

( ) { } ( )max 0, ( )
qq

i j

i j

g hϕ =+∑ ∑x x x              (27) 

where q is a positive integer, 1q =  is chosen in this paper for 

the simplification of calculation, which is also the choice in 

[10]. |ή| means the absolute operation, ԡήԡ  denotes the 2-

norm operation. The main idea of the İ-constrained method 

is to sort the individuals according to a İ-level comparison 

strategy. The İ-level comparison defines a rank for a given 

individual by comparing the pair ( ) ( )( ),J xϕx  of the given 

individual and that of other individuals. The rank 
bR  of the 

base individual used for the evolution of the p-th individual 

is adopted to calculate the corresponding scale factor, p
F , 

and the crossover rate, p
CR , which will be used in the 

process of differential evolution. More details can be found 

in [10].  

Remark 2 The İ-level comparison is a hierarchical 

sequence comparison method, in which the sorting is 

performed firstly according to ( )ϕ x  rather than ( )J x  

because it is more important to make x be feasible than to 

minimize ( )J x . 

B. MODIFIED İRDE ALGORITHM 

The İRDE algorithm was designed for constrained 

optimization problems that do not include noise signals, 

which cannot be applied to the recursive multipath 

estimation directly. In view of this, a modified İRDE is 

developed, the principle of which can be described as follows. 

In the initiation stage, a larger constraint violation level is 

allowed. The individuals after evolution will approach the 

global optimum but not converge exactly to the same point. 

The purpose of this is to prevent individuals from converging 

to local optima. With the iteration going on, a smaller 

constraint violation will be taken. Eventually, the constraint 

violation will approach to zero to ensure the individuals 

converge to the global optimum. This is because sufficient 

measurement information can be obtained to describe the 
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statistical property of the estimation error as time goes on. 

This idea can be realized by adaptively setting the violation 

level, ( )kε , as follows. 

( ) ( ) con

con

con

1
1 1 , 1

0,

cp

k
k T

k T

k T

ε
ε

  − − < ≤ =   
 >

              (28) 

with ( )1ε  being the sum of the constraint violation degree 

of the top a-th individuals. 0.2
p

a N=  is chosen in this paper. 

conT  and cp are constants used to control the convergence 

speed. 

Remark 3 The iteration index k in (28) is used to update 

the violation level, ( )kε , instead of the evolution number in 

[10]. This change is made for recursive estimation in this 

work that needs to consider noise. The violation level will 

decrease gradually towards zero as the iteration goes on. 

Denote 1ϕ  and 2ϕ  as the constraint violations for two 

different individuals 1x  and 2x . In order to reduce the 

complexity of the İRDE algorithm, the case of 1 2ϕ ϕ=  is not 

taken into consideration since it is unlikely to have 1 2ϕ ϕ=  

in practical applications. As a result, the İ-level comparison 

defined in [10] can be simplified as follows.  

( ) ( ) 1 2 1 2

1 1 2 2

1 2

, ,
, ,

otherwise

J J
J J

ϕ ϕ ε
ϕ ϕ

ϕ ϕ
< ≤

< ⇔  <
              (29) 

( ) ( ) 1 2 1 2

1 1 2 2

1 2

, ,
, ,

otherwise

J J
J J

ϕ ϕ ε
ϕ ϕ

ϕ ϕ
≤ ≤

≤ ⇔  ≤
              (30) 

The pseudo code of the proposed multipath estimation 

algorithm is given in Table ჟ. Herein the best individual of 

a population is chosen as the filter output, ˆ
k

x , at each 

iteration. The pseudo code of the modified İRDE algorithm 

at the k-th iteration is shown in Table რ, where 

1,2, ,k N=  , N is the iteration number.  

 
TABLE ჟ 

PSEUDO CODE  OF MULTIPATH ESTIMATION BASED ON İRDE 

ALGORITHM 
1ˊInitialization 

 //  Set up parameters:
pN , cp, S , 

conT , 2

sδ , W .  

 //  The upper and lower bounds of the multipath parameter 
0,kα ,

,m kα , 
kγ , ,m k

l  are given according to the prior information. 

 //  Generate the initial population
T

1 1,1 1,2 1,
ˆ ˆ ˆ ˆ, , ,

pN
 =  X x x x  

according to the boundary conditions.  

 // k=1 

1) Calculate the constraint violation degree, 
pϕ , and the 

objective function for all individuals according to (27) and 

(16).  

2) Rank the individuals according to the İ-level comparison 

strategy in (29) and (30).  

3) Calculate ( )1ε  using (28).  

4) 
1X̂  is saved as the first element of matrix

WX . 

5) Take the best individual of 
1X̂  as the multipath estimation 

result 
1x̂ . 

2ˊMultipath estimation 

// for 2 :k N=  

      if1 (
conk T≤ ) 

         ( ) ( ) ( ) cp

con1 1 1k k Tε ε= − −   ˗  

      else 

( ) 0kε = ˗ 

      end1  

//
T

,1 ,1 ,, , ,
pk k k k N

 =  X x x x  with ( ), 1,
ˆ

k p k p−=x A x ; 

// Call the modified İRDE algorithm to get the filter result 

ˆ
kX .  

if2 (k<=W) 

ˆ,W W k
 =  XX X  . 

else 

// Remove the first element of 
WX .  

//  Let ˆ,W W k
 =  XX X . 

end2 

// Take the best individual of ˆ
kX  as the multipath estimation 

result ˆ
kx . 

// Prepare for the next iteration. 

end for 

Note1: WX is a three-dimension matrix comprised of the population, 

1
ˆ

k W− +X , which is a two-dimension matrix, as the ( )1k W− + -th element. 

TABLE რ  

PSEUDO CODE OF THE MODIFIED İRDE ALGORITHM 
1. Initiation  

//  Set 
pN ,

minCR , 
maxCR , 

minF , 
maxF , 2

sδ , ( )kε , 0EF = , 

maxEF . 

// The initial population 
T

,1 ,1 ,, , ,
pk k k k N

 =  X x x x  is given. 

while  (
maxEF EF< ) 

1) Calculate the constraint violation degree 
pϕ  of each 

individual according to (27). 

2) Calculate the objective function value 
pf  according to (16) 

for the individuals whose violation degree is smaller than 

( )kε  and let 1EF EF= + .  

3) Rank the individuals according to the İ-level comparison 

strategy in (29) and (30).  

4) The best individual’s rank is given as 1 and the worst 

individual’s rank is 
pN .  

 2. RDE operation 

      // for 1: pp N=  

          1) Calculate the scale factor 
pF  and crossover rate 

pCR  

according to [10]. 

    2) Perform DE/rand/1/exp strategy in [10] and get the trail 

vector 
trial

px .          

          3) Limit 
trial

px  into its range according to (22) - (25). 

          4) Perform the selection operation: if 
trial

px  is better than 
px  

according to the İ-level comparison strategy; 
trial

px  is 
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allowed to enter the new population. Otherwise, 
p

x  enters 

the new population. The new individual is denoted as 
new

px .  

        end for 

     // Take the new population as the filter result ˆ
kX . 

end while 

Note2: maxEF is the maximum evolution number in one iteration. 

Remark 4 It is noted that in (16) and (19), W  error 

samples, i
e  ( 1, 2, ,i k W k W k= − + − +  ), are needed to 

compute the objective function, ( )k
J e , at time k . However, 

there are not enough samples that can be used to calculate 

( )k
J e  when k W≤ . Thus, the following formulas are used 

to replace (16) and (19). 

( ) ( )
1

1 k

k k

i k t

J V
t = − +

= − ∑e e                         (31) 

( )T

1

1 k

i i

i k t

threshold
t = − +

<∑ e e                    (32)

 

 

where 
k k W

t
W k W

≤
=  >

. In the implementation of the 

proposed algorithm, each individual’s W  samples are stored 

for computing the individual’s objective function in the 

receding horizon process.     

V. SIMULATION STUDIES 

In this section, the case studies with Gaussian noise and non-

Gaussian noise are conducted. Without loss of generality, we 

assume that the frequency tracking has been realized by a 

frequency lock loop. Then, the baseband signal of GPS in (1) 

is generated for the following two  scenarios: (a) a direct 

signal and single multipath, and (b) a direct signal and two 

multipath. The multipath is considered to be in-phase, i.e. 

, 0
m k

θ = , which is the worst possible case [30]. , ,m k m k
A α=  

is set according to the definition in Section II. The multipath 

parameters are supposed to be unchanged during the 

observation period, which means the system matrix ( )⋅A  

equals to an identify matrix. This a common scenario that a 

receiver stays still for geodetic surveying. In this case, the 

satellite dynamic can also be ignored since the observation 

period is less than 1 second which is a very short time 

compared to the time that the satellite dynamic would 

influence the estimation results. The system noise is assumed 

to be zero-mean Gaussian noise with the covariance matrix 

( )( )( )= diag 0.001 ones 1, 2 1M∗ +Q , ( )ones ,a b=c  is an 

identity vector with a rows and b columns. ( )diag c  is a 

matrix with the diagonal elements being elements in c.  

The correlator number should be larger than or equal to 

the state dimension number, i.e. S D≥ .  

For the scenario with a direct signal and single multipath: 

7S = , [ ]c c c c c c0.5 , 0.3 , 0.1 , 0, 0.1 , 0.3 , 0.5
s

d T T T T T T= − − − , 

0 0.9A = , 1 0.4A = , 0 c0.2Tγ = , 0 c10l T= , 1 c0.5l T= . 

For the scenario with a direct signal and two multipath, 

9S = , , , , , , 

, , 

[ ]c c c c c c c c0.7 ,0.5 ,0.3 ,0.1 ,0, 0.1 , 0.3 , 0.5 , 0.7
s

d T T T T T T T T= − − − −
. 

The average operation, ( )m m

1= 1
k k k

k k− − + y y y , is 

used to improve the algorithm performance since the 

multipath parameters are assumed to be unchanged during 

the observation period, where 
m

k
y  is the mean of 

observation outputs at the k -th observation period. 
m

k
y  is 

also used as the observation outputs in the comparison 

algorithm. The sampling interval is s c 10T T=  and the 

measurement period is o 1T = ms. It should be noted that the 

integer sampling is adopted for simplicity and the non-

integer sampling can be used to improve the estimation 

accuracy.  

Our goal is to estimate [ ]T0 1 0 1, , ,A A l l=x  for the single 

multipath case and [ ]T0 1 2 0 1 1, , , , ,A A A l l l=x  for the two-

multipath case. The observation period is 300ms for the 

single multipath case and 500ms for the two multipath case. 

In the following simulations, the root -mean-square error 

(RMSE) averaged over 100 Monte Carlo simulations and the 

error PDFs are shown to assess the estimation accuracy and 

randomness of the estimation results of multipath parameters 

for each case.  

A. THE GAUSSIAN NOISE CASE 

In previous works [30, 34], the carrier-to-noise ratio, 

 dB-Hz, is considered which corresponds to a 

signal-to-noise SNR=-18dB in base-band signal when the 

bandwidth of the front is B=2 MHz. In this work, a worse 

environment is considered for the base-band signal, i.e. 

SNR=-30 dB, since weak signal tracking is usually 

encountered in practice. The simulation parameters are set 

up as shown in Table ს. The parameters of 
minCR , 

maxCR , 

minF , 
maxF , cp  and threshold  are set according to the 

recommendation values in [10].  

 
TABLE ს  

SIMULATION SETTINGS WITH GAUSSIAN NOISE FOR SINGLE MULTIPATH 

parameter minCR
 

maxCR
 

minF
 

maxF
 

D  

value 0.85 0.95 0.6 0.95 4 

parameter pN  maxEF  cp  conT  ,minmA  

value 40 100 5 50 0 

parameter ,maxmA  minγ  maxγ  ,minml  ,maxml  

value 1 -0.5 0.5 0 2 

parameter W 
2

s
δ  threshold SNR  

value 50 1 10-5 -30dB  

0 0.9A = 1 0.7A = 2 0.4A = 0 c0.2Tγ = 0 c10l T=

1 c0.3l T= 1 c0.6l T=

0 45C N =
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For single multipath, M=1, ( )2 1 4D M= + = . The 

particle number p
N  is usually recommended to be 10 times 

larger than D for the DE algorithm. Therefore, 

10 40
p

N D= =  is set in this simulation. The bound range of 

0 1, ,A A γ  and 
1l  are set according to the characteristics of the 

direct signal and the multipath described in Section III. 

maxEF , 
conT , W  and 

2

s
δ  are set based on the 

recommendation in [10].  

The value of 
maxEF  should not be too large, otherwise the 

algorithm may converge too soon to a local optimum and the 

calculation complexity will be increased significantly. W  

should be chosen carefully to guarantee a fast convergence 

speed. W  also has influence on computational time, which 

means the larger the W , the higher the time cost. It is a 

proper choice to set 
conT W=  for a large number of 

simulations. 
2

s
δ  is a free parameter relevant to the strength 

of noise and its setting can refer to [35].  

The proposed algorithm is compared with EKF, and the 

estimation results are shown in Fig. 4. In this simulation EKF 

setting is given as follows. The initial state of x is the true 

value [ ]T0 0.9,0.4,10,0.5=x , the system noise covariance 

matrix and the initial filter covariance matrix P0 are set as Q= 

P0=diag(0.001*ones(1, D)), and the measurement noise 

covariance matrix is set as R=diag(0.01*ones(1, D)). We can 

observe that the proposed algorithm has similar performance 

as that of EKF.  

To further inspect the performance of the proposed 

algorithm, the error PDFs at three observation instants are 

shown in Fig. 5, from which it can be observed that the shape 

of the error PDF, for the proposed algorithm, turns out to be 

narrower and sharper over the iteration process, which means 

the randomness of the estimation error becomes smaller. 

However, there is still a visible steady-state estimation error 

in terms of the multipath time delay. This might be caused 

by measurement noise. The proposed algorithm can always 

converge exactly to the true value when there is no noise in 

the system. 

 
FIGURE 4.  The estimation results in single multipath environment with Gaussian noise 
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FIGURE 5.  The error PDF for the proposed multipath estimation algorithm in single multipath environment with Gaussian noise 

 

The constraint violation degree and the objective function 

of the proposed algorithm along the iterations are illustrated in 

Fig. 6 and Fig. 7. The same objective function is used for the 

proposed algorithm and the EKF. Here the same sliding 

window with size  is used to calculate the entropy of the 

estimation results at each iteration. The randomness curve of 

the EKF estimation is also shown in Fig. 7(The result is given 

in logarithm). We can see that for the proposed algorithm the 

constraint violation degree decreases to zero eventually and 

the objective function converges to a near-zero point. The 

proposed algorithm outperforms EKF in respect of 

randomness because EKF does not take randomness into 

consideration during its iteration. The nonlinearity in 

measurement function along with the truncated error in the 

process of linearizing also cause a larger randomness for EKF. 

 
FIGURE 6.  The constraint violation degree profile of the filter result in 
single multipath environment with Gaussian noise 

 

 
FIGURE 7.  The objective function profile for the joint measurement 
output error, single multipath with Gaussian noise 

For two-multipath, M = 2, ( )2 1 6D M= + = , ௣ܰ =

ܦ10 = 60, 
con 60T W= = . The other parameters are set as 

in Table რ. In this case, 
conT  is set larger than that of the 

single multipath case because more parameters need to be 

estimated for two multipath and more iterations are expected 

to decrease the constraint violation level to the threshold 

level. 

The estimation results are shown in Fig. 8. Similar results 

as that of Fig. 6 -Fig. 7 on the constraint violation and the 

objective function are obtained for the two multipath 

scenario, which are not shown here due to page limitation. In 

this simulation EKF setting is given as follows. The initial 

state of x is the true value [ ]T0 0.9,0.7,0.4,10,0.3,0.6=x , 

the system noise covariance matrix and the initial filter 

covariance matrix are set as Q = P0 = diag(0.001*ones(1,D)), 

and the measurement noise covariance matrix is set as R = 

diag(0.01*ones(1,D)).We can observe that the proposed 

algorithm achieves similar performance as EKF even when 

the true value is set as the initial state of EKF and the random 

values generated from a prior distribution are set as the initial 

state. In fact, the estimation result of EKF may converge to 

a wrong value when the initial state of EKF is set randomly 

from the prior distribution. In this sense, the proposed 

algorithm is less sensitive to the initial state.

W
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FIGURE 8.  The estimation results in two-multipath environment with Gaussian noise 

 

B. The non-Gaussian Noise Case 

In this section, a non-Gaussian noise is constructed with the 

mixture of Gaussian PDFs, i.e.

( ) ( )2 2

1 1 1 2 2 2, ,f N Nλ µ σ λ µ σ=+ , where ( )2,N µ σ  is a 

Gaussian distribution with mean ȝ and variance 2σ . 
1λ  and 

2λ  are the weights corresponding to the first and the second 

Gaussian individuals, respectively, and 
1 2 1λ λ+ = . The 

parameters are set as follows:
1 0.9λ = , 

2 0.1λ = , 

1 2 0µ µ= = , 
2

1 10σ =  and 2
2 100σ = . The simulation 

parameters are given in Table ტ. Other parameters are set as 

the same as that in the Gaussian noise case in Section V.A.  
 

TABLE ტ 

SIMULATION SETTING WITH NON-GAUSSIAN NOISE FOR SINGLE 

MULTIPATH 
paramete

r minCR
 maxCR

 minF
 maxF

 D  pN
 

value 0.85 0.95 0.6 0.95 4 40 

paramete

r maxEF  cp  
conT  

,minmA  
,maxmA  

minγ  

value 100 5 50 0 1 -0.5 

paramete

r maxγ  
,minml  

,maxml  W  2

sδ  threshold  

value 0.5 0 2 50 1 10-5 

paramete

r 1λ  
2λ  

1µ  
2µ  2

1σ  2

2σ  

value 0.9 0.1 0 0 10 100 

The proposed algorithm is compared with a standard PF 

algorithm and the results are shown in Fig. 9. In the PF 

algorithm, the prior density function is chosen as the 

importance density function. The particle number and the 

initial population of PF are set to be the same as in the 

proposed algorithm. It can be observed that the proposed 

algorithm clearly outperforms PF with higher estimation 

accuracy and smaller randomness. The error PDFs of the 

proposed algorithm are shown in Fig. 10, in which the error 

PDFs become more and more concentrated around zero 

mean as the iteration proceeds. 

For the single path case with non-Gaussian noise, the 

constraint violation and the objective function of the 

proposed algorithm along iterations are shown in Fig. 11 and 

Fig. 12. Again, the same objective function is adopted to 

measure the randomness of estimation result for both PF and 

the proposed algorithm. The randomness curve of the 

estimation result of PF is also shown in Fig. 12 (in logarithm 

scale). The proposed algorithm shows less fluctuations in the 

objective function than that of PF. This is because although 

PF is more suitable for non-Gaussian noise case than for 

Gaussian case, it still does not take into account the 

randomness of its estimation result in the filter design. 

For the two-multipath case with non-Gaussian noise, 

6D = , 10 60
p

N D= = , 
con 100T W= = . The other 

parameters are set as in Table ს. The estimation results of 

two-multipath using the proposed algorithm and the PF 
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algorithm are shown in Fig. 13. When the same particles are 

used, the estimation results indicate that the proposed 

algorithm has higher estimation accuracy and smaller 

randomness than the PF algorithm in non-Gaussian noise 

environment. 

 

FIGURE 9.  The estimation results in single multipath environment with non-Gaussian noise 

 

 
FIGURE 10.  The error PDF for the proposed algorithm with non-Gaussian Noise 
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FIGURE 11.  The constraint violation degree profile of the filter result in 
single multipath environment with non-Gaussian noise  

 

 
FIGURE 12.  The objective function profile for the joint measurement 
output error, single multipath with non-Gaussian noise  

 
FIGURE 13.  The estimation results in two-multipath environment with non-Gaussian noise 

 
VI. CONCLUSIONS 

In this paper, a new estimation algorithm is proposed for 

multipath estimation with Gaussian noise and non-Gaussian 

noise. The MEE criterion is used as the objective function. 

The second-order statistical information of the error as well 

as the prior information of the multipath parameters are taken 

as a set of constraints. A modified İRDE algorithm is 

developed to solve this constrained optimization problem to 

find a global solution. The simulation results demonstrate the 

effectiveness of the proposed algorithm for multipath 

estimation under both Gaussian and non-Gaussian noise 

environment.  

Compared with previous works on multipath estimation, 

the contributions of this work are four folds: (1) the multipath 

estimation problem is formulated as a constrained 

optimization problem; (2) an entropy criterion is adopted to 

reduce randomness of the estimation, and the prior 

information of multipath are also considered to constrain the 

solution space; (3) a modified İRDE algorithm is developed 

to solve the constrained optimization problem for a global 

optimal solution; (4) two multipath cases are examined. At 

the present stage, only the static multipath is considered and 

the proposed algorithm appears to be rather time consuming 

compared with EKF and PF. These numerical problems need 

to be tackled in the future work. 
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