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ARTICLE

Light induced non-volatile switching of
superconductivity in single layer FeSe on SrTiO3
substrate
Ming Yang1,2, Chenhui Yan 1, Yanjun Ma1, Lian Li1 & Cheng Cen 1

The capability of controlling superconductivity by light is highly desirable for active quantum

device applications. Since superconductors rarely exhibit strong photoresponses, and opti-

cally sensitive materials are often not superconducting, efficient coupling between these two

characters can be very challenging in a single material. Here we show that, in FeSe/SrTiO3

heterostructures, the superconducting transition temperature in FeSe monolayer can be

effectively raised by the interband photoexcitations in the SrTiO3 substrate. Attributed to a

light induced metastable polar distortion uniquely enabled by the FeSe/SrTiO3 interface, this

effect only requires a less than 50 µWcm−2 continuous-wave light field. The fast optical

generation of superconducting zero resistance state is non-volatile but can be rapidly

reversed by applying voltage pulses to the back of SrTiO3 substrate. The capability of

switching FeSe repeatedly and reliably between normal and superconducting states

demonstrate the great potential of making energy-efficient quantum optoelectronics at

designed correlated interfaces.
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Optical control of superconductivity has been the focus of
many research works1–5. For instance, optical phonon
pumping can be used to facilitate electron pairing3–5.

Such method, however, usually requires stringent resonance
conditions and intense laser pulses. The produced pairing states
often have a short lifetime and are only detectable by ultrafast
pump–probe measurements. To date, persistent impact on
superconductivity generated by continuous-wave (CW) light has
only been demonstrated in ionic liquid-gated organic materials1,
where the photochemically controlled isomerization of the ionic
liquid modulated the doping level in the superconducting layer.

Here, we explore a different strategy to optically manipulate
superconductivity in epitaxial heterostructures where the photo-
active and superconducting layers are strongly coupled through
the interface. By selecting a photoactive substrate that also exhibits
strong electron correlations, photoexcitation can yield additional
functionalities far beyond doping. The material system we study
here is the heterostructure of FeSe/SrTiO3. SrTiO3, well known for
its rich structural and electronic phases6–9, has a 3.2 eV direct
optical bandgap. In contrast, FeSe is a layer superconductor that
can be isolated to a single layer10. Monolayer FeSe is particularly
susceptible to charge transfer doping11–13, strain11,14, phonon
scattering15,16, and spin related proximity effects17 at the inter-
faces. The combination of these two materials has led to TC well
above the bulk values of FeSe11,18,19. In this system, we show that
a higher-TC metastable state in FeSe can be reached by a weak CW
UV photoexcitation in SrTiO3 substrate, owing to a polaron
related interface polar distortion. Using tailored sequence of UV
irradiation and field-controlled dipole re-orientations, the het-
erostructure can be persistently driven between the metastable
state and its ground state, allowing the superconducting zero-
resistance to be rapidly turned on and off. This realization of
persistent optical switching of high-temperature superconductivity
in FeSe/SrTiO3 highlights an interesting route toward the active
manipulations of quantum materials.

Results
Superconducting transitions in FeSe persistently controlled by
photoexcitations in SrTiO3 substrates. One unit cell (uc) FeSe
film (Fig. 1a) was grown on TiO2-terminated insulating SrTiO3

(001) substrate by molecular beam epitaxy (MBE). On top of the
FeSe monolayer, ~10 uc FeTe capping layer was grown subse-
quently. Transport properties of the capped film were char-
acterized shortly after the sample was removed from the ultrahigh

vacuum (UHV) growth chamber. A typical set of measurement
data is shown in Fig. 1. In dark, the onset temperature (TC) of the
superconducting transition was around 24 K (Fig. 1b, black).
Illuminated by 3.5 eV ultraviolet (UV) light, TC of the sample was
raised to 30 K (Fig. 1b, red). The observed superconductivity
enhancement can be produced by very weak UV light fields and is
independent on the illumination intensity (Fig. 1c). Photoenergy-
dependent measurements were also carried out at 1.5, 2.3, and
3.1 eV (Supplementary Figure 1). These longer wavelength lights
produced no observable effect in the transport measurements. In
metallic systems with large carrier densities, such as FeSe20, the
effects of direct carrier excitations by weak CW light on the
electrical properties are usually negligible. Considering the stark
contrast of the electrical responses to photons with energies below
and above 3.2 eV (i.e., bandgap of SrTiO3), the UV-induced
superconductivity enhancement observed here more likely origi-
nated from the optical absorption in the SrTiO3 substrate rather
than in the gapless FeSe film.

The light-induced transition into superconducting state occurs
very fast. While the study on the dynamic switching process is
currently limited by the time needed to update the UV diode
power supply output (a few ms), the almost instantaneous
resistance drops observed upon turning on the UV light indicate
that the light switching speed is at least in the kHz range or better.
More interestingly, the light-induced superconductivity enhance-
ment in FeSe persisted even after the UV light was turned off
(Fig. 2a). As shown in Fig. 2b, following a sharp optical switching,
the produced zero-resistance state was very stable in dark at 16 K.
This state can remain at least for days when the sample
temperature is kept constant. To better characterize the
persistency of the light-induced superconductivity enhancement,
we performed a multi-loop temperature variation experiment as
illustrated in Fig. 2c. In this experiment, the zero-resistance state
was first created at 16 K by UV light. After tuning off the UV
light, the sample went through a series of thermal cycles to
different maximum heating temperatures (TH= 20K, 30K, 40K,
…, 300K). After reaching TH, the sample was cooled back to 16 K
where its resistance was measured. The resistance at 16 K as a
function of TH exhibits a plateau-like behavior with two
significant upturns at 40 K and 150 K, both coinciding with
structural phase transitions in SrTiO3. Around 40 K, SrTiO3

undergoes a transition into quantum paraelectric state6,21–24. And
at 150 K, a cubic–tetragonal structural phase transition occurs in
the surface layers of SrTiO3

25,26. It’s worth noting that the dwell
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time at TH had no observable effect on the measurement result.
For example, after reaching 200 K, cooling immediately versus
staying at 200 K for several hours before cooling yielded the same
resistance measurement at 16 K.

Instead of thermal cycling to room temperature, the UV-
induced transition to superconducting zero-resistance state can
also be rapidly reverted at low temperature by applying bias
pulses to the back of the 0.5-mm-thick SrTiO3 substrate. To
restore the finite resistance, a negative bias needs to be applied
first. As shown in Fig. 3, after five −100 V, 5s voltage pulses, the
sample resistance can be raised to a value even larger what was
measured prior to UV exposure. This large resistance, however,
was decreasing slowly over the time. Then, by applying a positive
(5 s, 100 V) voltage pulse, the sample resistance can be quickly
stabilized near the pre-exposure value. We note that, the seconds-
level back bias switching speed, considerably slower than what
was produced by UV light, might be related to the capacitive
effects and defect states associated with the thick high-k dielectric
substrate. We also note that, the persistent switching effects of
back biases are only possible after UV exposure. In as-grown
samples, the effects of back biases are completely volatile as
discussed in ref. 13. Using the combination of UV light and back
bias pulses, FeSe can be switched between superconducting and
normal states repeatedly and reliably.

Photoexcited carriers transfer between SrTiO3 and FeSe. The
mechanism for the observed optical control of superconductivity
can be complex, as UV light affects SrTiO3 in many ways. For

example, if defects are introduced to SrTiO3 by the substrate pre-
annealing step in UHV, the relaxation of defects after carrier
excitation can serve as hole traps and produce persistent UV
photoconductance27,28. Exposing freshly cleaved SrTiO3 (001)
surface to intense extreme ultraviolet (EUV) light can lead to the
formation of surface two-dimensional electron gas (2DEG)29–31,
possibly originating from the creation of either oxygen vacancies
or surface reconstructions. Additionally, due to the strong cou-
pling between photocarriers and the lattice in SrTiO3, UV irra-
diations were also found to excite soft phonons/polarons32,33 and
cause persistent phonon softening at low temperatures34. In FeSe/
SrTiO3 heterostructures, many of these effects can potentially
impact the superconducting behaviors in FeSe through the
interface, such as generating charge transfer doping11–13,
modulating interface electron–phonon coupling15,16, and pro-
ducing interface lattice distortions14,35–39. Among these possible
contributors to the observed UV-induced persistent super-
conductivity enhancement, we first evaluate the role of photo-
excited charge transfer.

As shown in Fig. 4c, without UV illumination (black curve),
the magnitude of the Hall resistance RH decreases sharply toward
zero below TC due to the Meissner effect. In the presence of light
(yellow and red curves), the enhancement of superconductivity is
evident by the higher temperature where this sharp drop occurs.
Above TC, the Hall resistance under illumination only deviates
from the dark value between 50 K and 90 K. Such changes,
however, did not persist after turning off the UV light. In this
temperature range, the field dependence of the transverse
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resistance became nonlinear under the UV exposure (Supple-
mentary Figure 3), indicating the formation of mobile electrons
with mobilities much higher than the intrinsic carriers in FeSe.
This effect was accompanied by a large light-induced magne-
toresistance (Supplementary Figure 3) and a surface UV
photovoltage that becomes more positive with decreasing
temperature (Fig. 4d).

These features between 50K and 90 K can be understood by a
photoexcited charge transfer at the FeSe/SrTiO3 interface. When
electron–hole pairs are generated in SrTiO3 by UV light, due to its
upward band bending toward the interface12,13, holes are driven
into FeSe, leaving behind electrons in SrTiO3 (Fig. 4a, middle). Such
spatial charge separation effectively prevents the electron–hole
recombination, giving rise to a positive surface photovoltage and a
unique n-type photoconductance in SrTiO3 that was not observed
in identically processed bare SrTiO3 substrates within this
temperature range (Supplementary Figure 4).

While these results clearly indicate a significant photocarrier
transfer at the FeSe/SrTiO3 interface, the resultant hole doping
into FeSe is not likely to enhance superconductivity. Several
studies have identified the inter-electron-pocket pairing as the
most likely mechanism for the high-TC state in FeSe40–42, which
is expected to be enhanced by electron rather than hole
doping11,12,43. Also, light-induced Hall resistance modulation
(Fig. 4c) and photovoltage (Fig. 4d) both decreased significantly
below 50 K, indicating that the UV-induced interface charge
transfer is suppressed in the temperature range that is most
relevant to the superconducting transition.

Photocapacitances and photocarriers mediated interface dis-
tortions. To identify UV-induced effects in SrTiO3 at tempera-
tures below 50 K that can positively impact the superconducting
state in FeSe, AC impedance spectroscopy was performed
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(Fig. 4e) to detect signals that may not manifest in DC ohmic
measurements. Without UV exposure, the sample exhibits an ~3
nF temperature-independent capacitance (Supplementary Fig-
ure 5) that is related to the geometric dielectric properties of the
sample and contact junctions. Above 100 K, sample capacitance
was not affected by the UV light (Fig. 4e, top). Between 50 K and
90 K, a 101 nF level photocapacitance (marked as C1 in Fig. 4a)
was measured and associated with the interface charge separation
(Fig. 4e, middle). Below 50 K, while the charge transfer is
diminished significantly, another much greater (~102 nF) pho-
tocapacitance (marked as C2 in Fig. 4a) emerges (Fig. 4e, bottom)
and remains strong as temperature falls even below TC (Supple-
mentary Figure 5b).

The observed large photocapacitance provides a valuable hint
for understanding the optical superconductivity enhancement.
The generation of capacitance relies on the changes of either free
or bound charge distributions. Since the free charge separation
between different material layers are significantly suppressed at
low temperatures, the onset of photocapacitance C2 mostly likely
originates from an enhanced material polarizability and the
related bound charge formation in response to UV light.
Consistent with such assessment, a giant enhancement in
dielectric constant was reported in SrTiO3 samples irradiated by
UV light at low temperatures44. As discussed above, SrTiO3

undergoes a quantum paraelectric phase transition at low
temperatures6,21–24, where quantum fluctuations associated with
zero-point energy prevent the onset of long-range ferroelectric
order. In this phase, photoexcited electrons can quadratically
couple to the T1u soft mode (relative displacement between the Ti
ion and the oxygen octahedra) and directly impact the quantum
fluctuations32–34,45. In particular, the polarons formed from
photocarriers and phonons can serve as effective charge trap to
suppress electron–hole recombination and generate local dipole
moments44, leading to the large photocapacitance observed in our
experiments.

In FeSe/SrTiO3 heterostructure, the interface band bending12,13

gives rise to a large electric field at the interface that points from
SrTiO3 to FeSe. In the presence of this field, the alignment of
induced dipole moments at the interface may effectively modify the
ferroelectric distortions with relative out-of-plane shifts between
the Ti and O ions that are well known for both single-46 and
double-TiO2

47 terminated SrTiO3 surfaces. As a result, it is viable
that the Se–Fe–Se angle in the FeSe monolayer, a parameter
sensitively modulating the electron correlation strength in FeSe35,
will be perturbed as well (Fig. 4b). Because of such photocarrier-
mediated structural distortion, an enhancement in superconduc-
tivity can be produced. Besides of producing a superconductivity
enhancement in FeSe and a large photocapacitance in SrTiO3, the
T1u polaron related interface polarization will also reduce the band
bending and thus suppress the photocarrier transfer between
SrTiO3 and FeSe (Fig. 4a, right). This effect well explains the
reductions of surface photovoltage and Hall resistance modulations
observed below 50 K (Fig. 4c, d).

We note that, the possibility of generating oxygen vacancies
(OV) in SrTO3 by UV irradiation was also suggested in several
studies30,48. While OVs can have a lower formation energy38 in
the double-TiO2 surface layer found in some FeSe/SrTiO3

heterostructures13,39 and are often associated with interface-
enhanced superconductivity37,49, they are not likely the origin of
the light-induced TC enhancement observed here. First, the
creation of OVs typically requires extended exposure time and
should be highly dependent on light intensity30,48, both of which
are inconsistent with our observations. In addition, since FeSe is
prone to oxidation, the removal of oxygen with FeSe in proximity
may generate chemical modifications in FeSe that are harmful to
its superconductivity.

As shown in Fig. 2, the light-induced zero-resistance state well
persisted after the removal of UV light, indicating that the charge
trapping by polarons and the interface polar distortion triggered
by light is metastable in the quantum paraelectric phase without
external perturbation. While the combination of photocarrier,
strong electron–phonon coupling, and built-in electric field
allows the system to reach such metastable state with higher
TC, there can be multiple pathways for the system to go back to
the ground state. One of them is through thermal cycling to
different structural phases (Fig. 2c). Alternatively, by applying an
external field antiparallel with the built-in field, as executed via
negative back biases (Fig. 3), re-alignment of the interface dipoles
can also quickly excite the system from the UV-induced
metastable state, allowing it to either slowly relax toward the
ground state or rapidly settle with the aid of positive back bias
(Fig. 3).

Effects of the capping layer in restricting the superconducting
transition temperature. TC observed by ex situ transport mea-
surements typically varied between samples when they were
measured in as-grown state in dark (Fig. 5a, black). Nonetheless,
the TC enhancement induced by UV light always saturated at
around 30 K (Fig. 5a, red). To understand the origin of such TC
saturation, we characterized the superconducting transition in the
same sample both before it was capped by FeTe layers using
in situ ARPES (Fig. 5b–d) and after it was capped using ex situ
transport measurements (Fig. 5a, Supplementary Figure 6).
Comparing with the ~50 K gap opening temperature detected by
ARPES before capping, the ~30 K onset TC observed in ex situ
transport measurements was much lower. Additionally, ARPES
data showed that the uncapped film had no hole pocket at the Γ-
point, and the n-type doping was little changed as temperature
varied (Supplementary Figure 6a, b). In contrast, the ex situ
transport measurements performed on capped film revealed a co-
existence of electrons and holes and a strongly temperature-
dependent doping type (Supplementary Figure 6c).

Since the FeTe capping layer itself typically had a much lower
conductance comparing with the FeSe samples (Supplementary
Figure 6d), electrical shunting caused by the capping layer is
expected to be weak. Instead, the capping layer as well as the
environmental factors more likely introduced a profound
modification to the electrical properties of the FeSe monolayer
underneath, which restricted the highest TC that can be reached
by manipulating the FeSe/SrTiO3 interface alone. To evaluate the
full capability of the UV-induced superconductivity enhance-
ment, alternative capping methods (Supplementary Figure 8)
and/or in situ measurements with light excitations needs to be
explored in the future.

In conclusion, we have shown that a brief exposure to a weak
(~101 µW cm−2) 3.5 eV CW UV light can raise the super-
conducting TC in FeSe/SrTiO3 heterostructure and generate zero-
resistance state that persists in dark for at least days. We attribute
this effect to the strong photocarrier–phonon coupling in SrTiO3

and the resultant metastable polar lattice distortion occurred at
the FeSe/SrTiO3 interface. Quick and non-volatile switching
between this metastable state and the as-grown ground state can
be achieved by UV photoexcitation and field-controlled interface
dipole re-orientations. An ex situ TC upper limit of ~30 K, even
with the UV enhancement, was observed. This TC bottleneck is a
result of the second interface formed between FeSe and the
capping layer. To further enhance the ambient superconducting
performance of FeSe, this interface deserves as much as attention
as the interface formed with the substrate. The FeSe/SrTiO3

heterostructures also exhibited very large photovoltage and
photocapacitance that are consequences of interfacial effects,
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showing a promising potential for the implementations of
designed heterostructures from 3D oxides and 2D layered
materials in optoelectronic applications. Most importantly, the
capability of manipulating the superconducting state by photo-
excitations in the substrate demonstrated a promising venue for
realizing active controls in correlated materials.

Methods
SrTiO3 substrate preparation. The insulating single crystal SrTiO3 (001) was
cleaned with deionized water for 30 min then chemical etched with buffered-oxide
etchant for 1 min. It was subsequently thermal annealed in a tube furnace under O2

flow for 4 h to obtain a TiO2-terminated surface. The substrate was then transferred
into the ultrahigh vacuum (UHV) MBE chamber and annealed at 600 °C for 30
min. After those treatment, the SrTiO3 (001) surface becomes atomically flat with
well-defined step-terrace structure, as shown in Supplementary Figure 2a.

FeSe films and FeTe capping layer preparation. The growth of monolayer FeSe
films were carried out on SrTiO3 (001) substrates in an UHV system (base pressure
~1 × 10−10 Torr) that integrates two MBE chambers, a room temperature scanning
tunneling microscope (STM), a low temperature (5 K–300 K) STM and an angle
revolved photoemission spectroscopy (ARPES). For the growth of monolayer FeSe
films, the substrate was held at around 400 °C, and Fe and Se were supplied via
separate Knudsen cells with a flux ratio of around 1:10. The film, as shown in
Supplementary Figure 2b, was then annealed at ~520 °C for 2–3 h and in situ
transferred into RT-STM and ARPES. For ex situ electrical transport measure-
ments, around 10ML FeTe films were deposited on 1ML FeSe/SrTiO3(001) by co-
evaporating Fe and Te with a flux ratio of around 1:4, and the substrate was kept at
~300 °C. The growth rate is 0.5 ML/min for both FeSe and FeTe growth.

STM and ARPES measurements. In situ STM imaging with a chemically etched
tungsten tip was used to monitor surface morphology of SrTiO3 (001), FeSe and
FeTe films at room temperature. ARPES was carried out with a Scienta DA30
analyzer and He discharge lamb (hv= 21.218 eV). The energy resolution was set at

~ meV, as shown in Supplementary Figure 6. The angular resolution is 0.3°. The
Fermi level was determined by measuring the Ag film on Si (111) substrate (shown
in Supplementary Figure 7).

Magnetotransport and photocapacitance measurements. Ex situ magneto-
transport measurements with and without UV illumination was performed using a
Quantum Design Physical Property Measurement System (PPMS). Photo-
capacitance measurements were performed in the same PPMS system but using an
external lock-in amplifier for the AC current sourcing and voltage detection.
Indium electrical contacts were mechanically attached to the sample surface in Van
der Pauw geometry at room temperature in the atmosphere. 3.5 eV UV light used
in the experiments was generated by a light emitting diode (LED) and collimated
by lenses.

Photovoltage measurements. Photovoltage measurements were performed in a
Montana instrument Cryostation system. 3.5 eV UV light used was generated by a
LED source and focused to the sample surface near one electrode by lenses. Voltage
between illuminated and unilluminated electrodes was measured by a Keithley DC
nanovoltmeter.

Data availability
The datasets generated during and/or analyzed during the current study are
available from the corresponding authors on reasonable request.
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