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Abstract 28 

The management and disposal of livestock manure has become one of the top environmental 29 

issues at a global scale in line with the tremendous growth of poultry industry over the past 30 

decades. In this work, a potential alternative method for the disposal of chicken manure from 31 

Singapore local hen layer farms was studied. Gasification was proposed as the green 32 

technology to convert chicken manure into clean energy. Through gasification experiments in 33 

a 10 kW fixed bed downdraft gasifier, it was found that chicken manure was indeed a 34 

compatible feedstock for gasification in the presence of wood waste. The co-gasification of 35 

30 wt% chicken manure and 70 wt% wood waste produced syngas of comparable quality to 36 

that of gasification of pure wood waste, with a syngas lower heating value (LHV) of 5.23 37 

MJ/Nm3 and 4.68 MJ/Nm3, respectively. Furthermore, the capability of the gasification 38 

derived biochar in the removal of an emerging contaminant (artificial sweetener such as 39 

Acesulfame, Saccharin and Cyclamate) via adsorption was also conducted in the second part 40 

of this study. The results showed that the biochar was effective in the removal of the 41 

contaminant and the mechanism of adsorption of artificial sweetener by biochar was 42 

postulated to be likely via electrostatic interaction as well as specific interaction. Finally, we 43 

conducted a cost-benefit analysis for the deployment of a gasification system in a hen layer 44 

farm using a Monte Carlo simulation model.  45 

 46 

 47 

 48 

Keywords: gasification; chicken manure; biochar, adsorption; emerging contaminants; cost-49 

benefit analysis. 50 

 51 

 52 
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1. Introduction 53 

Due to the tremendous growth of poultry industry over the past decades, the management and 54 

disposal of livestock manure has become one of the top environmental issues at a global scale 55 

[1]. An estimate by the United States Department of Agriculture (USDA) showed that farms 56 

in the United States produce more than 335 million tonnes of dry matter waste annually [2]. 57 

This huge amount of animal manure if not properly disposed of, may lead to air pollution due 58 

to the release of gases such as hydrogen sulphide and ammonia [3]. The leaching of manure 59 

by rainwater followed by runoff of the leachate, or the presence of pathogens in the manure, 60 

could also potentially result in the contamination of soil and water resources, which 61 

eventually will affect human health [1].     62 

 63 

In Singapore, there are three hen layer farms which cater for about one fourth of the total egg 64 

demand, i.e., around 1.2 million/day [4]. These farms inevitably generate over 200 tonnes of 65 

animal waste on a daily basis, the disposal of which poses a potential challenge. Specifically, 66 

Chew's Agriculture rears approximately 750,000 chickens that generate 60 tonnes of chicken 67 

manure per day, while Seng Choon Farm produces about 70 to 80 tonnes of chicken manure 68 

per day [5]. One of the potential ways to dispose of the animal manure is incineration [6]. 69 

However, the incineration of manure produces a cocktail of toxic by-products (e.g., dioxins 70 

and furans) that are harmful to the environment and general public health if not appropriately 71 

controlled [7]. There is a need to develop or apply alternative technologies to treat or contain 72 

this dairy biomass.  73 

 74 

Gasification is gaining increasing attention in the waste-to-energy or renewable energy 75 

research field as it is regarded as a green technology that could potentially be an alternative 76 

solution to incineration in the disposal of the chicken manure. It has been showcased in a 77 
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number of studies that gasification is capable of treating a diverse source of solid waste such 78 

as sludge, wood and horticultural waste, food waste, dairy manure, and etc. [8-11] with 79 

encouraging results. Since gasification is conducted in an oxygen deficient environment as 80 

opposed to the oxygen-rich environment in incineration, the formation of the toxic pollutants 81 

is effectively restrained [9, 12]. Furthermore, the gasification technique is well suitable for a 82 

decentralised application [13]. On-site treatment of chicken manure at the farms will benefit 83 

in two ways: (1) the environmental concerns (e.g., pathogen transmission and odour spread) 84 

during the transport of chicken manure to incineration plants is avoided; (2) the power 85 

generation (e.g., electricity converted from syngas) from gasification could be used to satisfy 86 

a part of the energy demand of the farms. Furthermore, while syngas could also be used for 87 

synthesis of valuable hydrocarbons via the Fischer-Tropsch process, a water-gas shift 88 

reaction (CO + H2O ⇌ CO2 + H2) is required to adjust the syngas to an ideal H2:CO ratio of 89 

2:1 beforehand, typically done in the industry first through a high temperature shift followed 90 

by a low temperature shift to maximize CO conversion [14]. Last but not least, gasification 91 

also produces valuable solid products such as biochar and ash at the end of the process [15, 92 

16] which have a great application potential in multiple fields including building and 93 

construction, agriculture, water treatment, catalysis and etc. [17-19]. For example, biochar 94 

can be mixed into soil for agricultural purposes to enhance soil quality and nutrient content 95 

[20, 21]. Because of its low bulk density [22], biochar could also be mixed into concrete as 96 

construction material and offers the benefits of light weight and carbon sequestration 97 

capability [23].  98 

 99 

Recently, the capability of biochar in the adsorption and removal of some pollutants such as 100 

heavy metals and organic contaminants in water streams is also well-recognized [18, 24]. As 101 

a newly recognized class of emerging contaminants, the artificial sweetener (AS) such as 102 
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Acesulfame, Saccharin, Cyclamate, and etc., in water streams pose a potential threat to 103 

ecosystems  because it is extremely persistent and resistant to conventional waste water 104 

treatment processes [25, 26]. Its continuous introduction into the water environments has 105 

caused an accumulation in many aquatic ecosystems. Previous studies have shown that AS 106 

may change the physiology and locomotion of Daphnia magna [27], and interfere with plant 107 

photosynthesis [28]. However, since conventional approach is not very effective in the 108 

removal of AS from water streams [29, 30], there is a need to explore alternative methods 109 

that are cost effective yet environmentally friendly. One possible solution is to use biochar 110 

that is derived from solid waste through the gasification technology. The successful 111 

adsorption of AS by the biochar derived from the gasification of chicken manure will add a 112 

further economic benefit from biochar sale to the farms.  113 

 114 

In this work, the feasibility of applying the gasification technology for the on-site disposal of 115 

chicken manure at hen layer farms is explored. The performance of the co-gasification 116 

between chicken manure and wood chips is assessed, with the quality of syngas produced 117 

being the indicator. The capability and mechanism of gasification-derived biochar in 118 

adsorbing and removing AS from water are studied. Lastly, a cost-benefit analysis is 119 

conducted to showcase the economic viability of the on-site application of gasification 120 

systems at the farms. Overall, this work aims to show that gasification system as a whole is a 121 

robust technology for waste reduction, energy harvesting, valuable solid product generation. 122 

 123 

2. Materials and Methods 124 

2.1 Feedstock preparation 125 

Chicken manure collected from a local chicken farm was first dried at 68oC for 24 hours in a 126 

dehydrator (Excalibur Parallex 9 Trays commercial dehydrator) to remove its free moisture 127 
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content. The chicken manure moisture content after drying was approximately 10 wt%. The 128 

dried manure was then used for subsequent characterization and gasification experiment. The 129 

mesquite wood chips (Kingsford Manufacturing Co., USA) used for mixing with chicken 130 

manure prior to co-gasification were approximately 2.54-3.81 cm in size. Two types of final 131 

feedstock were prepared for gasification/ co-gasification: (i) 100 wt% wood chips 132 

(100%WC), and (ii) 30 wt% chicken manure + 70 wt% wood chips mixture 133 

(30%CM+70%WC). The reason for using a 30 wt% chicken manure in the mixture was to 134 

avoid bridging in the hopper based on our past experience that feedstock with sizes below the 135 

lower limit (1.27 cm) has a higher likelihood of blocking the hopper, hence obstructing the 136 

flow of feedstock down the reactor [11]. 137 

 138 

2.2 Feedstock characterization 139 

Proximate analysis and ultimate analysis were performed on chicken manure and wood chips. 140 

For proximate analysis of feedstock, a Thermal Gravimetric Analyzer (TGA) (Shimadzu, 141 

DTG-60A) was employed where the feedstock sample was heated from 25oC to 800oC at a 142 

rate of 20oC/minute in nitrogen or air atmospheres. The TGA profile was then used to 143 

identify the moisture, volatiles, fixed carbon and ash contents of feedstock.  144 

 145 

For ultimate analysis, a Vario MACRO Cube elemental analyzer was used to determine the 146 

carbon, hydrogen, nitrogen and sulphur content of the feedstock. Briefly, approximately 2-3g 147 

of sample was combusted at 1150oC to produce CO2, H2O, NO2, and SO2 gases, and the gas 148 

detector would detect and analyze the mass percentage of each element (C, H, N and S). The 149 

mass percentage of oxygen was estimated by subtracting C, H, N, S and ash content mass 150 

percentages from 100%. The higher heating value (HHV) of each feedstock was subsequently 151 

estimated using Eq. (1) [31]: 152 
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 153 

HHV= 0.3491*MC+ 1.1783*MH+ 0.1005*MS– 0.1034*MO– 0.0151*MN – 0.0211*Mash (1) 154 

where Mi is the mass percentage of the element i (i.e. i = C, H, N, S, O and ash). 155 

 156 

2.3 Co-gasification experiment 157 

The gasifier used in this experiment was a 10kW fixed-bed downdraft gasifier with a 158 

feedstock intake rate of 10kg/h (All Power Labs, Berkeley, CA). Figure 1(a) shows the 159 

schematic of the gasifier. The feedstock was first introduced into the hopper located at the top 160 

of the gasifier and the vacuum fan was switched on. Then the gasifier was started up by 161 

introducing and igniting some gasoline at the igniter to heat up the reactor. Upon reaching a 162 

temperature range of ~800-900oC, the rotating auger was initiated to feed the feedstock into 163 

the gasifier at a rate of 10kg/h, where the feedstock went through four zones of reactions 164 

namely drying, pyrolysis, combustion and reduction (gasification). Air flow into the 165 

combustion zone of the reactor was regulated through a nozzle to control the temperature 166 

where necessary. The air flow rate in the experiment was 4L/s. Upon reaching a steady state 167 

operation (approximately 850oC in the reduction zone and 900oC in the combustion zone with 168 

no significant fluctuation), the syngas produced was tapped from the gas sampling port and 169 

filtered before it was analysed by a Gasboard 3100P gas analyser to measure the CO, H2, 170 

CO2, CH4, O2 content and the lower heating value (LHV) of the syngas. For every batch of 171 

the experiment, the residence time of the feedstock in the gasifier was roughly 3 hours. While 172 

the downstream syngas to power generation section was not covered in the scope of this 173 

work, a more complete schematic was proposed (process flowsheet in Figure 1(a)) and details 174 

were further outlined in Section 2.6 to allow a more thorough analysis of the deployment of 175 

gasification system in hen layer farms. 176 

 177 
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2.4 Characterization of biochar 178 

The morphological structure of the biochar produced from gasification was observed with a 179 

scanning electron microscope (SEM) (JEOL JSM 5600LV). The surface area and porosity of 180 

biochar was analysed with a Brunauer–Emmett–Teller (BET) test. Proximate and ultimate 181 

analyses were also performed on biochar based on the procedures described in Section 2.2. 182 

The pH of the biochar was determined with a SI Analytics Lab 870 pH meter by suspending 183 

1g of biochar in 10ml of deionized water.  184 

 185 

2.5 Adsorption of artificial sweetener (AS) 186 

2.5.1 Kinetics and isotherms study of adsorption of AS by biochar 187 

The three species of artificial sweeteners (AS) of interest, acesulfame (ACE), saccharin 188 

(SAC) and cyclamate (CYC), were purchased from Sigma-Aldrich Pte. Ltd., Singapore. 189 

These three AS species were chosen as they are very commonly studied in research owing to 190 

their presence in many water systems [26, 32]. For kinetics study, 10mg of biochar was 191 

suspended in 5ml of 100ppb AS (dissolved in deionized water) in 15ml centrifuge tubes. The 192 

tubes were left shaking at 150rpm and 25oC for different durations. At pre-determined time 193 

points (every 30 minutes, up to 6 hours), the tubes were retrieved from the shaker and the 194 

contents filtered to separate the solid biochar and liquid AS. 100ppb AS solutions in 15ml 195 

centrifuge tubes without the addition of biochar were used as the respective controls for each 196 

time point. The filtrate was then sent for LC-MS/MS analysis to determine the concentration 197 

of AS using a similar method in our previous work [33].  198 

 199 

For isotherms study, 10mg of biochar was suspended in 5ml of AS of different initial 200 

concentrations (10-100ppb) for 6 hours. After 6 hours of shaking, the filtrate was analysed 201 

with LC-MS/MS using the method described above to determine the concentration of AS, 202 
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which was also the equilibrium concentration. AS solution in the absence of biochar was used 203 

as a control. All experiments were conducted in triplicates. 204 

 205 

2.5.2 Effect of pH and water hardness on adsorption capacity 206 

To investigate the effect of pH on the adsorption capacity in an attempt to investigate the 207 

mechanism of adsorption, 10mg of biochar was suspended in 5ml of 100ppb AS in 15ml 208 

tubes. Then the suspension pH was adjusted by the dropwise addition of HCl or NaOH to a 209 

pH range of 3-10 (SI Analytics Lab 870 pH meter). As the dropwise addition was done with a 210 

10μl pipette and 6-8 drops were added to each sample on average, the influence to the overall 211 

concentration was assumed to be negligible. The suspensions were shaken at 150rpm and 212 

25oC for 6 hours. After that, the suspension pH was re-measured (due to the buffering 213 

capacity of the biochar) and the suspension was filtered. The AS concentration of the filtrate 214 

was measured by LC-MS/MS. Meanwhile, to study the effect of water hardness, 10mg of 215 

biochar was suspended in 5ml of 100ppb AS in water of different total hardness (as CaCO3 216 

mg/L): DI water (0 mg/L), Singapore tap water (66 mg/L on average [34]), mixture of DI and 217 

tap water in 1:1 ratio (~33 mg/L), seawater (~6630 mg/L [35]), and 10× diluted seawater 218 

(~663 mg/L). Similar to the above, the suspension was filtered after adsorption and the AS 219 

concentration of the filtrate was measured by LC-MS/MS. 220 

 221 

 2.5.3 Effect of pH on zeta potential of AS-biochar suspension 222 

To determine whether specific bonding between AS molecules and biochar surface (that can 223 

result in a change in the overall biochar surface charge) is a possible mechanism of 224 

adsorption, the zeta potential of AS-biochar suspension was measured. The zeta potential of 225 

biochar in deionized water or 100ppb AS at different pH was determined by suspending 10 226 

mg of biochar in 40 mL of deionized water or AS. The suspension pH was adjusted to within 227 
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the range of 3 – 8 with HCl or NaOH (SI Analytics Lab 870 pH meter). Similarly, the total 228 

volume of acid or base added was negligible as compared to the final suspension volume. 229 

Following pH adjustment, the suspension was sonicated for 30 minutes at 25oC in an 230 

ultrasonic bath unit (Elma S30H), and subsequently allowed to stand for 2 days before the 231 

zeta potential was measured with Malvern Zetasizer Nano ZS. The suspension pH was also 232 

re-measured when measuring the zeta potential. 233 

 234 

2.6 Cost-benefit analysis 235 

2.6.1 Scheme Proposal and Parameter Selection 236 

A complete schematic of the whole gasification plant to be set up in the farm is proposed 237 

(presented in Figure 1(a)) to facilitate a more thorough analysis of the technology from the 238 

starting point (feedstock) to electricity generation. After the gasification of feedstock to 239 

produce syngas as discussed in section 2.3, the syngas is cleaned up via a series of processing 240 

units such as cyclone, cooler and scrubber to remove fine particulates and impurities. 241 

Thereafter, cleaned syngas is fed to a gas engine to generate electricity. The power output is 242 

calculated as [36]  243 

𝑃 = 𝑚̇𝑏𝑖𝑜𝑚𝑎𝑠𝑠  × 𝐿𝐻𝑉feedstock × 𝐶𝐺𝐸 × 𝐸𝐹 (2) 
 244 

where 𝑚̇𝑏𝑖𝑜𝑚𝑎𝑠𝑠  is the biomass consumption rate (kg/h); LHVfeedstock (MJ/kg) is the lower 245 

heating value of feedstock; CGE is the cold gas efficiency; EF is the electrical efficiency of 246 

the gas engine. LHVfeedstock and CGE are obtained based on our experiments.  247 

 248 

Based on the design of the plant proposed above, a cost-benefit analysis for the deployment 249 

of a gasification system in one of the hen layer farms is conducted following a similar scheme 250 

employed by the study of You et al. [13]. The cost components involved in the gasification-251 

based disposal include the initial capital investment such as the facility and land costs, 252 
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operating and maintenance (O&M) cost, woodchip cost, cost contingency, and external costs. 253 

However, for the case of hen layer farms, the existing, spacious land space makes the land 254 

cost negligible, that is, no extra land space needs to be purchased for the gasification system. 255 

We consider to use commercial woodchips as co-gasification agents instead of existing 256 

horticultural or wood waste as proposed in the study by You et al. [13]. The woodchips do 257 

not need to go through a pre-treatment process and could be directly used for gasification as 258 

we did during the experiments. The bulky and loose form of horticultural or wood waste and 259 

the large demand of co-gasification agent further makes the use of horticultural or wood 260 

waste less realistic for a hen layer farm. The cost contingency is used to consider the costs 261 

that are unknown at the moment but will probably occur in the future. The external costs 262 

defined as the monetary valuation of damages caused by the pollutants emitted during a 263 

process are also negligible as suggested by previous studies [13]. Hence, the major cost 264 

components are the facility cost, O&M cost, woodchip cost, cost contingency. Note that the 265 

cost of the gasification system used in the CBA is an overall cost of the system based on the 266 

reference of the data, that is, it includes the cost of gasifier, syngas cleaning units, and 267 

electricity generation system. The O&M cost includes salaries, training cost, and component 268 

replacement cost, etc. The major benefit components include selling electricity (energy 269 

income), waste (chicken manure) disposal income, and biochar (resource income). To 270 

account for the underlying uncertainty of variable parameters, triangular distributions are 271 

assumed and the cost-benefit analysis is modeled by Monte Carlo simulation with a total of 272 

105 iterations. The triangular distributions of the variable parameters are summarized in Table 273 

1. 274 

 275 

Similar to the study by You et al. [13], a triangular distribution with a lower limit, mode, and 276 

upper limit of 1000, 1500 and 2000 US$/kW, respectively, is set to be the unit cost of a 277 
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gasification system (including both gasifier and gas engine sub-systems) in 2007. The cost is 278 

updated to the current year (2017) using the Chemical Engineering Plant Cost Index (CEPCI) 279 

as Eq. (3) 280 

Cost𝑖 = Cost𝑗(CEPCI𝑖/CEPCI𝑗) (3) 

where 𝑖 and 𝑗 denote the current year (2017) and base year (2007), respectively. The annual 281 

value of CEPCI for 2007 was 525.4, while the annual value of CEPCI for year 2017 is not 282 

available and is represented by that for 2015, i.e., 556.8. The scale dependence of facility cost 283 

is considered by Eq. (4) [37] 284 

Cost𝑘 = Cost𝑖(S𝑘/S𝑖)𝑓 (4) 

where S𝑘 and S𝑖 denote the designed facility capacity and base facility capacity, respectively. 285 

Considering an operating time of 24 hours per day [38], the yearly mass of chicken manure of 286 

around 27000 tons [5], and a feedstock mixture ratio of 30% vs 70% between the chicken 287 

manure and woodchips, the full load capacity of the designed system is estimated to be 288 

around 3.1 MW with a feedstock consumption rate of 3.7 ton/hr. The base facility capacity 289 

was set to be 1 MW [39]. 𝑓 = 0.7 is the scaling factor.  290 

 291 

Similar to the study by You et al. [13], a triangular distribution with a lower limit, mode, and 292 

upper limit of 0.008, 0.014, and 0.02, respectively, is set for the ratio between the monthly 293 

O&M cost and the capital cost (i.e., the facility cost). It is assumed that the O&M cost 294 

increases at a rate of 5% [40]. The price of wood chips is set to be triangularly distributed 295 

with a lower limit, mode, and upper limit of 100, 150, and 200 US$/ton [41], respectively. 296 

The cost contingency is considered to have a triangular distribution with a lower limit, mode, 297 

and upper limit of 2, 4, and 6 US$/kW/year [40], respectively. The electrical efficiency of gas 298 

engine is considered to have a triangular distribution with a lower limit, mode, and upper 299 

limit of 25%, 30%, and 35%, respectively [42]. The syngas to power conversion efficiency is 300 
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typically about 25% [43]. Electricity is also consumed by the gasification system itself, which 301 

is the so-called auxiliary electricity consumption (AEC). AEC is considered to be 10% [40]. 302 

A triangular distribution with a lower limit, mode, and upper limit of 0.1, 0.2, and 0.3 303 

US$/kWh, respectively, is assumed for the tariff of electricity [44]. The waste income is 304 

estimated by the product of net waste handled by the gasification system and the refuse 305 

disposal fee. A triangular distribution with a lower limit, mode, and upper limit of 50, 60, and 306 

70 US$/ton, respectively, is assumed for the refuse disposal fee [45]. Note the waste disposal 307 

benefit here denotes the cost that the farm otherwise needs to undertake if the chicken manure 308 

is disposed outside of the farm (i.e., by incineration). The price of biochar is set to be 309 

triangularly distributed with a lower limit, mode, and upper limit of 1000, 2500, and 4000 310 

US$/ton, respectively, considering the global average biochar price is around 2650 US$/ton 311 

[46]. The mass of biochar is based on our experimental data as reported below.  312 

 313 

The net present value (NPV) is calculated as Eq. (5) 314 

NPV = �
𝐶𝑖𝑡

(1 + 𝑟)𝑡

𝐿𝑇

𝑡

− 𝐶0 (5) 

where 𝐶𝑡 is the net cash inflow during a year t; 𝐶0 is the total initial capital investment; 315 

LT=20 denotes the life time of the gasification facility; 𝑟 is the discount rate and is set to be 316 

triangularly distributed with a lower limit, mode, and upper limit of 1%, 8%, and 15%, 317 

respectively, according to the study by You et al. [13]. 318 

 319 

 320 

 321 

 322 

 323 
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3. Results and discussion 324 

3.1 Characteristics of feedstock  325 

Table 2 shows the results from the proximate analysis and ultimate analysis of chicken 326 

manure and wood waste. As compared to wood waste, chicken manure contained lower C, H 327 

and O content but higher N and ash content. Hence, the HHV of chicken manure is lower 328 

(approximately half) than that of wood waste as estimated by Eq. (1). Though the HHV of 329 

chicken manure is significantly different (lower) from that of wood waste, co-gasification of 330 

these two materials may still be feasible, but it has to be conducted with care (e.g. appropriate 331 

mixing ratio of these two feedstocks such that the amount of chicken manure is lesser than 332 

wood waste) so as to not severely affect the overall gasification performance. Additionally, 333 

when compared to other existing studies [47-49], it was found that the composition of 334 

chicken manure could vary significantly especially its C content and hence the HHV, which 335 

is not uncommon, mainly due to the different origins and management practices of farm [50].  336 

 337 

3.2 Gasification performance 338 

Figure 1(b) shows the transient syngas data from the co-gasification of 30% chicken manure 339 

+ 70% woodchips recorded by the online gas analyser throughout a period of 15 minutes. 340 

When steady state was achieved, the individual syngas data points were averaged over the 341 

steady state range to estimate the mean syngas composition. The mean gas composition of the 342 

main syngas component (CO and H2) as well as CH4 and CO2 is shown in Figure 1(c). It was 343 

observed that the syngas produced from the co-gasification of 30%CM+70%WC had a 344 

slightly higher CO and H2 volume percentage, lower CO2 volume percentage and similar 345 

CH4 percentage, as compared to the gasification of pure woodchips. Syngas from 346 

30%CM+70%WC contained ~20 vol% CO and ~18 vol% H2, while syngas from 100%WC 347 

contained ~15 vol% CO and ~16 vol% H2.  The remaining components in the syngas 348 
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generally consist of species that are incombustible such as long carbon chained tar, hydrogen 349 

sulphide, carbonyl sulphide, ammonia, nitrogen and other trace contaminants [51]. Overall, 350 

the lower heating value (LHV) of the syngas produced from 30%CM+70%WC (5.23 351 

MJ/Nm3) was comparable to that of 100%WC (4.68 MJ/Nm3).  352 

 353 

The slightly higher LHV of syngas from 30%CM+70%WC could be attributed to the 354 

different structure and properties of the feedstock. Firstly, chicken manure is smaller in size, 355 

softer and more loosely packed, while wood chips are bigger in size, harder and more 356 

compacted. When subjected to gasification, it is hence easier for chicken manure to attain a 357 

complete conversion reaction to produce syngas as compared to wood chips. Secondly, wood 358 

chips has a higher fixed carbon content than chicken manure. In general, biomass with higher 359 

fixed carbon content tend to favour biochar formation [52], which in turn indicates that a 360 

lower syngas yield or quality could be expected. Therefore, syngas from the co-gasification 361 

of chicken manure and wood chips has more volumetric energy density (MJ/Nm3) than 362 

gasification of pure wood chips.  363 

 364 

While the co-gasification of chicken manure and wood chips was only conducted at one 365 

mixing ratio (30% chicken manure) due to limited amount of feedstock collected, the 366 

performance of other mixing ratios (e.g. 10%, 20% chicken manure) could be inferred from 367 

our previous study using food waste [11]. When co-gasified with wood chips at increasing 368 

ratio of food waste (0%, 20%, 30% and 40% food waste), the quality of syngas produced in 369 

terms of its LHV slightly increased, before encountering the bridging issue due to large 370 

amount of undersized particles. As both food waste and chicken manure have similar physical 371 

texture, i.e. smaller, softer and more loosely packed than woodchips, such that they are easily 372 

reacted completely inside the gasifier to produce syngas, the same increasing LHV trend is 373 
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expected when their percentage is increased in the feedstock mixture. A comparable and 374 

similar quality of syngas was obtained for the co-gasification of 30% food waste and 70% 375 

wood chips (LHV 5.27 MJ/Nm3). All these results showed that chicken manure, like wood 376 

chips and food waste, has the right chemical and physical properties for gasification in our 377 

gasifier.  378 

 379 

In this study, by performing a mass balance, pure wood gasification resulted in approximately 380 

79.8% syngas, 13.9% biochar and 6.3% ash, while co-gasification of chicken manure and 381 

wood chips produced about 80.8% syngas, 7.2% biochar and 12.0% ash. The mass fraction of 382 

syngas was similar for both cases, while the addition of chicken manure for gasification 383 

resulted in a higher mass fraction of ash (lower biochar) than pure wood gasification, mainly 384 

due to the high ash content of chicken manure as presented in Table 2. Our finding was 385 

somewhat similar with the literature that gasification typically results in roughly 85% gaseous 386 

products, 10% solid residue and 5% liquid [53]. It is also known that downdraft gasifier 387 

produces lesser tar-oils (<1%) and more particulate matter [54]. Therefore, the amount of 388 

liquid produced in this study was assumed negligible.   389 

 390 

Last but not least, the raw material to syngas conversion efficiency, or the cold gas efficiency 391 

(CGE) for both cases was estimated using Eq. (6) 392 

𝐶𝐺𝐸 = 𝐿𝐻𝑉𝑔𝑎𝑠 × 𝑉̇𝑔𝑎𝑠
𝐿𝐻𝑉𝑏𝑖𝑜𝑚𝑎𝑠𝑠 × 𝑚̇𝑏𝑖𝑜𝑚𝑎𝑠𝑠

 × 100%    (6) 393 

where 𝐿𝐻𝑉𝑔𝑎𝑠 is the LHV of syngas produced (MJ/Nm3), 𝑉̇𝑔𝑎𝑠 is the volumetric flow rate of 394 

syngas (m3/hr), 𝐿𝐻𝑉𝑏𝑖𝑜𝑚𝑎𝑠𝑠 is the LHV of biomass (MJ/kg) and 𝑚̇𝑏𝑖𝑜𝑚𝑎𝑠𝑠 is the biomass 395 

consumption rate (kg/hr). It was estimated that the CGE was approximately 64.9% and 69.2% 396 

for the case of 100%WC and 30%CM+70%WC, respectively. This is similar to the CGE 397 

reported in our previous study using the same gasifier for the gasification of woody biomass 398 
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and mixture with sewage sludge [9]. Though fixed bed downdraft gasifier is known to have a 399 

lower efficiency than other gasifiers such as the updraft gasifier due to a high amount of heat 400 

being carried over by the hot gas [55, 56], it is still preferred for power generation as the 401 

quantity of tar produced is very low [57]. 402 

  403 

3.3 Characteristics of biochar 404 

The characteristics of the solid residue generated from the gasification experiments, i.e. the 405 

biochar, are shown in Table 3. It was noted that the pH of both the biochar (pure woodchips 406 

gasification biochar (WC BC) and chicken manure-woodchips co-gasification biochar (CM 407 

BC)) was approximately 10, i.e. in the alkaline range. This is consistent with other reported 408 

results in the literature that biochar is generally near neutral or alkaline in pH [58, 59]. From 409 

the SEM images in Figure 2, though high porosity was observed for both types of biochar, 410 

BET analysis showed that their external surface area was quite different. CM BC contained a 411 

higher external surface area (340 m2/g) than WC BC (172 m2/g), which could be attributed to 412 

the different properties of feedstock. In brief, wood chips were bigger in size and had higher 413 

fixed carbon content than chicken manure. Hence, it was likely that wood chips experienced a 414 

lower burn-off rate compared to the smaller size chicken manure which was more easily and 415 

quickly reacted. As such, WC BC had a lower porosity and surface area. This was also 416 

reflected by a higher C content remaining in WC BC (84%) compared to that of CM BC 417 

(71%). Our finding was similar to the study of Lima et al. [60] where the surface area of their 418 

wood shavings biochar was also smaller than that of chicken litter biochar. Nevertheless, the 419 

highly porous structure and high surface area of the biochar make it a good adsorbent for the 420 

removal of water contaminants such as artificial sweeteners [61-63]. Since CM BC was found 421 

to contain higher surface area, it was used for subsequent adsorption study.   422 

 423 
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3.4 Adsorption kinetics of AS by biochar 424 

Figure 3(a) shows the adsorption kinetics of the 3 AS species (ACE, SAC and CYC) by 425 

biochar. In contrast to the typical sorption kinetics that display a smooth L-shape curve with 426 

sorption capacity gradually increasing with time, it was observed that the AS kinetic 427 

adsorption curve increased very quickly within the first 0.5hr and then slowly plateaued off. 428 

This could be due to the absence of the intra-particle surface diffusion owing to the large pore 429 

size of biochar, hence there was no rate limiting diffusion step [64]. This is in contrast to the 430 

behaviour of a microporous sorbent [65, 66].  Equilibrium was reached approximately within 431 

the first two hours of adsorption, with an adsorption capacity of about 30, 50 and 50 mg/kg 432 

for ACE, SAC and CYC, respectively. This is also equivalent to a removal efficiency of 433 

82.5%, 98.4% and 65.9% for the three AS species respectively.  434 

 435 

From the limited number of such studies in the literature, only one most representative study 436 

was found where AS was removed by metal-organic frameworks (MOFs) and activated 437 

carbon (AC) [67]. When compared to this study, though the SAC adsorption performance of 438 

our biochar was not as superior as the AC, it is noteworthy that the AS concentration used in 439 

both studies was different, and AC is a much higher quality and hence expensive material as 440 

compared to biochar. Our study used a concentration in the ppb range, a level typically 441 

detected in the environment such as surface water or water treatment plants [26, 68], for a 442 

more realistic and representative evaluation of the current situation. Furthermore, the benefit 443 

of using biochar is to offer low cost adsorptive material that is easily affordable. 444 

Nevertheless, this biochar can be upgraded to AC through activation processes [62] at 445 

additional costs to further maximize its performance.  446 

 447 
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In addition, to further examine the kinetic adsorption of AS onto the biochar surface, the AS 448 

sorption experimental data at various time points was also fitted into several kinetics models 449 

in the literature. Out of the more popular kinetics models such as the first order, second order, 450 

and Elovich rate model [69], it was found that the Elovich rate model (Eq. (7)), wherein the 451 

model assumes that the adsorption sites are heterogeneous and exhibit a variety of activation 452 

energy during the adsorption process [70], provided the best fit for all three AS species.  453 

𝑞𝑡 = 1
𝛽

ln𝛼𝛽 + 1
𝛽

ln 𝑡                                                     (7) 454 

where  𝑞𝑡 (mg/kg) is the amount adsorbed/ adsorption capacity , 𝑡 (hr) is the time, 𝛼 455 

(mg/kg/hr) is the initial adsorption rate, and 𝛽 (kg/mg) is the desorption constant. The 456 

corresponding R2 fitting value and the relevant parameters are reported in Table 4.  It was 457 

found that 𝛼 was the largest for SAC among the three species, indicating its high initial 458 

adsorption rate as shown by the steepest gradient in Figure 3(a). On the other hand, the 459 

adsorption of CYC gave the smallest 𝛼 due to its lower adsorption rate as shown by the curve 460 

wherein it was still gradually increasing while the adsorption of SAC and ACE had already 461 

plateaued off.  462 

 463 

3.5 Adsorption isotherms of AS by biochar 464 

As the adsorption isotherm is commonly used to define the characteristic of solid-liquid 465 

adsorption process at equilibrium, the adsorption isotherm study was conducted. Figure 3(b) 466 

shows the sorption isotherms of ACE, SAC and CYC by biochar, i.e. the sorption capacity at 467 

different equilibrium concentrations. Similarly, the experimental data was fitted to two 468 

isotherms models such as the Langmuir model (Eq. (8)) and Freundlich model (Eq. (9)), 469 

respectively.  470 

𝑆 =  𝑆max𝐾𝐶
1+𝐾𝐶

                                                  (8) 471 

𝑆 =  𝐾𝑓𝐶𝑛                                                   (9) 472 
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where  𝑆 (mg/kg) is the amount adsorbed/ adsorption capacity , 𝐶 (ppb) is the equilibrium 473 

concentration, 𝑆max R (mg/kg) is the maximum amount adsorbed, 𝐾 (1/ppb) is the Langmuir 474 

adsorption constant related to the interaction bonding energy, 𝐾𝑓 (mg/kg/ppbn) is the 475 

Freundlich equilibrium constant, and 𝑛 is the Freundlich linearity constant.  476 

 477 

For ACE and CYC, the Langmuir model was found to be a better model to represent their 478 

respective adsorption trend (R2=0.997 for ACE and R2=0.969 for CYC), whereas SAC was 479 

better fitted into the Freundlich model (R2=0.862). The fitted model parameters of each AS 480 

species are shown in Table 5. The fitting results showed that the Langmuir model 𝑆max value 481 

was estimated to be larger for ACE than CYC, indicating that the maximum adsorbed amount 482 

for ACE was higher than CYC at any given concentration, as represented by its steeper 483 

gradient in Figure 3(b). On the other hand, 𝐾 was smaller for ACE than CYC. This inverse 484 

trend is due to the negative correlation between the bonding energy governing the 𝐾 value 485 

and the adsorption maximum 𝑆max [71]. Additionally, it was noted that unlike the typical L-486 

shape of a Langmuir isotherm curve, the Langmuir adsorption isotherms of ACE and CYC 487 

were almost linear. This was due to the low concentration of AS used (10-100ppb). At low 488 

concentrations, Eq. (8) is simplified into a linear expression. 489 

 490 

An equilibrium parameter (𝑅𝐿) can also be used to express the characteristics of the 491 

Langmuir isotherm based on Eq. (10) [72]. 492 

𝑅𝐿 =  1
1+𝐾𝐿𝐶0

                                                  (10) 493 

where 𝐾𝐿 is the Langmuir isotherm constant and 𝐶0 is the initial concentration. 𝑅𝐿 indicates 494 

the nature of adsorption where 𝑅𝐿 = 0 means irreversible, 0 < 𝑅𝐿 < 1 means favourable, 495 

𝑅𝐿 = 1 means linear, and 𝑅𝐿 > 1 means unfavourable [73]. Based on the initial concentration 496 

range of 10-100ppb used in this study, it was found that the 𝑅𝐿 values fall within the range of 497 
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0.58-0.99. This indicates that from Langmuir isotherm point of view, biochar is favourable 498 

for the adsorption of AS (ACE and CYC) at the experimental conditions used.  499 

 500 

3.6 Effect of pH and water hardness on adsorption capacity of AS by biochar 501 

Figure 4(a) shows the adsorption capacity of AS by biochar at different suspension pH. The 502 

solution pH is a vital parameter in adsorption process as it affects both the adsorbent (e.g. 503 

surface charge) and adsorbate (e.g. ionization and speciation) [74, 75]. The pH at point of 504 

zero charge (pHpzc) was approximately pH3.5 (Figure 5). From Figure 4(a), the pH range for 505 

this experiment was >pH 3.5 (within pH 7-10). In general, beyond pHpzc, biochar surface 506 

charge is net negative. From this test, it was found that adsorption capacity decreases with 507 

increasing pH. As pH increases with the addition of alkaline (OH-), the functional groups 508 

(typically phenolic —OH and—COO- groups) of biochars become more deprotonated [76], 509 

hence the overall surface charge is even more negative. This weakens the electrostatic 510 

attraction between cationic AS molecules and negative biochar surface. Furthermore, the OH- 511 

ions will compete with anionic AS molecules for adsorption sites. These lead to the decrease 512 

in adsorption efficiency. On the other hand, as pH decreases with the addition of acid (H+), 513 

the functional groups are more protonated. Biochar net surface charge becomes less negative 514 

(more positive), hence the electrostatic attraction is stronger and the adsorption efficiency 515 

increases. This observation suggests that electrostatic interaction could be a mechanism 516 

governing the adsorption of AS onto biochar, which is consistent with the findings in 517 

literature that electrostatic interaction is the dominant mechanism for the adsorption of 518 

organic contaminants onto chars [77]. Figure 4(b) shows the effect of water hardness on the 519 

adsorption capacity of AS onto biochar. In general, as water hardness increased, the 520 

adsorption efficiency of the three AS species decreased. This is somewhat consistent to the 521 

finding reported by Couto et al. where the adsorption of caffeine onto activated carbon 522 
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decreased under the influence of water hardness, mainly due to the competition effect from 523 

calcium and magnesium ions [78]. 524 

 525 

3.7 Effect of pH on AS-biochar suspension zeta potential 526 

From Figure 5, the pH at point of zero charge (pHpzc) was approximately pH3.5 for both 527 

deionized water (control) and AS. When pH> 3.5, zeta potential was negative, indicating that 528 

the biochar surface charge was net negative. In general, with increasing pH, the zeta potential 529 

became more negative, which suggests that the amount of negative charge increased with pH. 530 

Furthermore, in the presence of 100ppb AS, the pH-zeta potential curve shifted slightly to the 531 

positive direction. This indicates that there could be some specific bonding or interaction 532 

between the AS molecules and the biochar surface such that AS can be specifically adsorbed 533 

by biochar. When there is any change in the bonds (e.g. adsorbed ions diffuse into the Stern 534 

layer of electric double-layers and form bonds with the biochar surface), the biochar net 535 

surface charge will be changed, hence the zeta potential will change as well [79]. Based on 536 

this observation, it is hypothesized that specific bonding between AS molecules and 537 

functional groups of biochar surface could also be a potential mechanism of adsorption in 538 

addition to electrostatic interaction.  539 

 540 

3.8 Cost-benefit analysis 541 

The calculated NPV distribution is shown in Figure 6 (a). The average and standard deviation 542 

of the NPV distribution are -4.6 million US$ and 21.9 million US$, respectively, over a 543 

course of 20 years. Statistically, there is a 41.5% chance for the gasification-based disposal 544 

system to bring profit to the farm. Figure 6 (b) shows the comparison among the average cost 545 

and benefit components. It is shown that the biochar selling income (53.9 million US$) 546 

accounts for the most of the income, followed by the electricity selling income (49.3 million 547 
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US$) and waste disposal income (6.0 million US$), respectively. The setting of the variable 548 

parameters (e.g., biochar price, electricity tariff, and electrical efficiency) is based on the 549 

possible values of recent years, while they may vary significantly depending on the market. 550 

The biochar price could be even higher than the ones considered in this work upon the 551 

increase of market demand [46, 80, 81]. A 100% increase in the biochar price could increase 552 

the profitability probability and average NPV of the gasification system to 93.7% and 49.1 553 

million US$, respectively. Recycling of gasification biochar is important towards the 554 

economic feasibility of the gasification system. The increase of electricity tariff could 555 

effectively improve the economics of the system. A 100% increase in the electricity tariff 556 

could make the system to be 94.2% profitable with an average NPV of 44.2 million US$. 557 

Increasing the overall electrical efficiency of the system serves to increase the energy income, 558 

which could be achieved by increasing (1) the CGE of the gasifier and (2) the EF of gas 559 

engine. For the former, however, caution needs to be taken because a higher CGE generally 560 

corresponds to a lower biochar yield (or even a deterioration of biochar quality) and thus less 561 

biochar income. This means that the increase of the total income due to the increase of 562 

electricity income could be lessened. For the latter, the biochar yield and quality are not 563 

affected and the total electricity income will increase. For example, if the EF of gas engine 564 

increases by 50%, the profitability chance and average NPV of the system increase to 71.7% 565 

and 14.3 million US$, respectively. The woodchip cost is the biggest cost component (96.6 566 

million US$) followed by the O&M cost (9.03 million US$) and the facility cost (3.4 million 567 

US$). The economics of the system could be improved upon the reduction of the woodchip 568 

price or using cheaper alternative co-gasification agents. Halving the woodchip price could 569 

increase the profitability chance and average NPV to 99.5% and 45.2 million US$, 570 

respectively. Finally, the O & M cost and facility cost may decrease with the continuous 571 

advancement of the gasification technology. For example, a 50% decrease in the ratio 572 
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between the monthly O&M cost and the capital cost increases the profitability probability and 573 

the average NPV to 49.7% and -0.38 million US$. On the whole, the economics of the system 574 

has a potential to be further improved in the future.  575 

 576 

4. Conclusions 577 

In this study, co-gasification of wood waste and chicken manure was conducted in a 10kW 578 

fixed-bed downdraft gasifier to evaluate the feasibility of chicken manure as a gasification 579 

feedstock. At the same time, the potential of chicken manure as a source for a green and 580 

sustainable energy production was studied. The co-gasification test was successfully 581 

conducted for a feedstock composition of 30% chicken manure and 70% wood waste. It was 582 

found that at 30% chicken manure, the quality of syngas produced in terms of LHV was not 583 

significantly different (comparable or slightly higher) from that of pure wood waste 584 

gasification, which is an indication that chicken manure is suitable for mixing with wood 585 

waste as a feedstock for gasification. This suggests that gasification may be a potential 586 

technology for the disposal of chicken manure in a green and environmental friendly way 587 

while harnessing clean energy in the form of syngas concurrently.    588 

 589 

Furthermore, the biochar produced was found to be able to effectively remove artificial 590 

sweeteners (Acesulfame, Saccharin and Cyclamate), a newly categorized class of emerging 591 

contaminant, from water via adsorption. Both the kinetics and isotherms sorption behaviors 592 

were studied. Based on the effect of pH on the zeta potential of AS-biochar suspension and 593 

adsorption efficiency, it is postulated that electrostatic and specific interaction are potential 594 

mechanisms governing the adsorption. Last but not least, the cost-benefit analysis showed 595 

that there was around 41.5% chance for the system to profit the farm and this probability 596 
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increases to over 90% if either the biochar price or electricity tariff are doubled, or the 597 

woodchip price is halved.  598 
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Figure 1. (a) Schematic of fixed-bed downdraft gasifier, and a process flow diagram showing 

the proposed system for integration of gasifier with other downstream processing units 

(syngas clean-up and gas engine) for power generation at the farm, (b) Transient syngas data 

from the co-gasification of chicken manure and woodchips, (c) Syngas composition and its 

lower heating value (LHV) from the gasification of pure woodchips (100% WC) as compared 

to the co-gasification of 30% chicken manure and 70% woodchips (30% CM + 70% WC). 
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Figure 2. Scanning electron microscopy (SEM) images of biochar from (a, c) pure wood 

chips gasification, and (b, d) co-gasification of chicken manure and wood chips. 
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Figure 3. Adsorption of artificial sweeteners by biochar: (a) sorption kinetics, (b) sorption 

isotherms.  
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Figure 4. Effect of (a) pH and (b) water hardness on the adsorption efficiency of artificial 

sweeteners by biochar. 
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Figure 5. Zeta potential of biochar at different pH. 

 

 

 

 

 

   
Figure 6. (a) The distribution of NPV. (b) The comparison among average cost and benefit 

components. The positive values denote benefits while negative values denote costs. The 

numbers besides the bars in (b) are averages and have the unit of million US$.   
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Table 1. The lower limit, mode, and upper limit of triangular distributions for 
cost-benefit analysis using Monte Carlo simulation. 

Variable parameters Lower limit Mode Upper limit 

Cost of a gasification system in 2007 

(US$/kW) 
1000 1500 2000 

Ratio between monthly O&M cost 

and capital cost 
0.008 0.014 0.02 

Cost contingency (US$/kW) 2 4 6 

Price of wood chips (US$/ton) 100 150 200 

EF (%) 25 35 30 

Tariff of electricity (US$/kWh) 0.1 0.2 0.3 

Refuse disposal fee (US$/ton) 50 60 70 

Price of biochar (US$/ton) 1000 2500 4000 

Discount rate (%) 1 8 15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. Proximate, ultimate analysis and higher heating values of chicken manure 
and wood waste. 
 

Feedstock Chicken Manure Wood Waste 

Proximate Analysis (dry basis, wt %)   

 Moisture 10.0 (73.6*) 8.3 

 Volatile 55.2 69.2 

 Fixed Carbon 9.5 16.2 

 Ash 25.3 6.3 

   

Ultimate Analysis (dry basis, wt %)   

 C 28.2 44.24 

 H 3.5 6.05 

 N 8.1 0.86 

 S 1.1 0.95 

 O# 33.8 41.60 

 HHV (MJ/kg) 9.93 18.22 

   
*as received (wet basis)  #by difference 
 
HHV= 0.3491*MC+ 1.1783*MH+ 0.1005*MS– 0.1034*MO– 0.0151*MN – 0.0211*Mash 
where M i : mass fraction of i-th element (i.e. i = C, H, N, S, O and ash) in the waste. 
 



Table 3. Characteristics of biochar  
 

Item 

Biochar from chicken 

manure-wood chips 

co-gasification (CM BC) 

Biochar from pure wood 

chips gasification (WC 

BC) 

pH 10.12 9.94 

Ultimate Analysis (wt%) 

C 

H 

N 

S 

70.67 

2.06 

0.68 

<0.5 

84.5 

1.0 

0.5 

<0.5 

Surface Area (m2/g) 342.26 172.24 

Total pore volume (cc/g) 0.224 0.121 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4. Kinetics data fitted to Elovich rate model 
 

Species α (mg/kg/hr) β (kg/mg) R2 

ACE 1.37 x 108 0.671 0.7624 

SAC 1.71 x 1077 3.704 0.8344 

CYC 1.36 x 104 0.187 0.8352 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 5. Isotherms data fitting 
 

Species Model 
Smax 

(mg/kg) 

K 

(1/ppb) 

Kf 

(mg/kg/ppbn) 
n R2 

ACE 
Langmuir 5000 0.0004 - - 0.9967 

Freundlich - - 2.19 0.96 0.9888 

SAC 
Langmuir -7.89 -0.62 - - 0.8103 

Freundlich - - 13.19 3.51 0.8623 

CYC 
Langmuir 140.85 0.0072 - - 0.9692 

Freundlich - - 1.12 0.92 0.9628 
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