79 research outputs found

    Links between Psychological Contract and Job Performance of Employee in E-Business Company

    Get PDF
    The performance of staffs directly determines competitive power of enterprise in fierce market, and it also influences the long-term development of enterprise. If enterprise motivate employees only by virtue of economic contract, it cannot effectively assure staff performance, because psychological contract also affects employee’s work behavior and work attitude. This is especially notable in E-Business company because most E-business companies have a high turn-over rate and most of their employees are 80s or 90s. The essence of enterprise competition is talents, the emphasis on psychological contract can effectively reduce employee turnover rate and improve employee’s working efficiency in E-Business company. This paper sums up the connotations and features of psychological contract and job performance and puts forward relationship model of psychological contract and job performance. We make employees of Y company as the object of empirical study and carry out questionnaire research, use SPSS software to develop statistical data analysis. It shows that psychological contract has significant positive effect on job performance of E-business company. Finally, this paper puts forward some management strategy for enterprises to enhance psychological contract of employees according to the result of survey

    TRH Analog, Taltirelin Protects Dopaminergic Neurons From Neurotoxicity of MPTP and Rotenone

    Get PDF
    Dopaminergic neurons loss is one of the main pathological characters of Parkinson’s disease (PD), while no suitable neuroprotective agents have been in clinical use. Thyrotropin-releasing hormone (TRH) and its analogs protect neurons from ischemia and various cytotoxins, but whether the effect also applies in PD models remain unclear. Here, we showed that Taltirelin, a long-acting TRH analog, exhibited the neuroprotective effect in both cellular and animal models of PD. The in vitro study demonstrated that Taltirelin (5 μM) reduced the generation of reactive oxygen species (ROS) induced by MPP+ or rotenone, alleviated apoptosis and rescued the viability of SH-SY5Y cells and rat primary midbrain neurons. Interestingly, SH-SY5Y cells treated with Taltirelin also displayed lower level of p-tau (S396) and asparagine endopeptidase (AEP) cleavage products, tau N368 and α-synuclein N103 fragments, accompanied by a lower intracellular monoamine oxidase-B (MAO-B) activity. In the subacute MPTP-induced and chronic rotenone-induced PD mice models, we found Taltirelin (1 mg/kg) significantly improved the locomotor function and preserved dopaminergic neurons in the substantia nigra (SN). In accordance with the in vitro study, Taltirelin down-regulated the levels of p-tau (S396), p-α-synuclein (S129) tau N368 and α-synuclein N103 fragments in SN and striatum. Together, this study demonstrates that Taltirelin may exert neuroprotective effect via inhibiting MAO-B and reducing the oxidative stress and apoptosis, preventing AEP activation and its subsequent pathological cleavage of tau and α-synuclein, thus provides evidence for Taltirelin in protective treatment of PD

    TRH Analog, Taltirelin Improves Motor Function of Hemi-PD Rats Without Inducing Dyskinesia via Sustained Dopamine Stimulating Effect

    Get PDF
    Thyrotropin-releasing hormone (TRH) and its analogs are able to stimulate the release of the endogenic dopamine (DA) in the central nervous system. However, this effect has not been tested in the Parkinson’s disease (PD), which is characterized by the DA deficiency due to the dopaminergic neurons loss in the substantia nigra. Here, we investigated the therapeutic effect of Taltirelin, a long-acting TRH analog on 6-hydroxydopamine-lesioned hemi-Parkinsonian rat model. 1–10 mg/kg Taltirelin i.p. administration significantly improved the locomotor function and halted the electrophysiological abnormities of PD animals without inducing dyskinesia even with high-dose for 7 days treatment. Microdialysis showed that Taltirelin gently and persistently promoted DA release in the cortex and striatum, while L-DOPA induced a sharp rise of DA especially in the cortex. The DA-releasing effect of Taltirelin was alleviated by reserpine, vanoxerine (GBR12909) or AMPT, indicating a mechanism involving vesicular monoamine transporter-2 (VMAT-2), dopamine transporter (DAT) and tyrosine hydroxylase (TH). The in vivo and in vitro experiments further supported that Taltirelin affected the regulation of TH expression in striatal neurons, which was mediated by p-ERK1/2. Together, this study demonstrated that Taltirelin improved motor function of hemi-PD rats without inducing dyskinesia, thus supporting a further exploration of Taltirelin for PD treatment

    Ultrasound-assisted lipase catalyzed hydrolysis of aspirin methyl ester

    Get PDF
    Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ultsonch.2017.08.004.The ultrasound-assisted hydrolysis of aspirin methyl ester (AME) was investigated using immobilized Candida antarctica lipase B (CALB) (1%) in the presence of solvents like triolein, chloroform (CHCl3) and dichloromethane (DCM). The effect of ultrasound and the role of water on the conversion rates have also been investigated. Proton nuclear magnetic resonance spectroscopic (1H NMR) was chosen to calculate hydrolysis convertion rates. We observed that lipase-ultrasound assisted hydrolysis of AME in the presence of triolein and water showed the highest hydrolysis conversion rate (65.3%). Herein low water amount played an important role as a nucleophile being crucial for the hydrolysis yields obtained. Lipase activity was affected by the conjugated action of ultrasound and solvents (35.75% of decrease), however not disturbing its hydrolytic efficiency. It was demonstrated that lipase is able to hydrolyse AME to methyl 2-hydroxy benzoate (methyl salicylate), which applications include fragrance agents in food, beverages and cosmetics, or analgesic agent in liniments.All authors gratefully acknowledge the financial support provided by International Joint Research Laboratory for Textile and Fibre Bioprocesses at Jiangnan University. The authors are also thankful to the Department of Oils, Oleochemicals and Surfactants technology, Institute of Chemical Technology, Mumbai, India and to the Bioprocess and Bio nanotechnology Research Group (BBRG) of University of Minho. Authors would like also to acknowledge the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE01-0145-FEDER-000004) funded by European Regional Development Fund under the scope of Norte2020 – Programa Operacional Regional do Norte and to the Fundamental Research Funds for the Central Universities (No. JUSRP51622 A and No. JUSRP115A03), and to the Jiangsu Province Scientific Research Innovation Project for Academic Graduate Students in 2016 (No. KYLX16_0788).info:eu-repo/semantics/publishedVersio

    Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis

    Get PDF
    The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery applications. Statement of Significance The surface topography of synthetic biomaterials plays important roles in material-driven osteogenesis. The data presented herein have shown that the surface topography of calcium phosphate ceramics regulates mesenchymal stromal cells (e.g., human bone marrow mesenchymal stromal cells, hBMSCs) with respect to morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation in vitro. Together with bone formation in vivo, our results suggested a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery by the bioengineering control of osteogenesis via primary cilia modulation

    Influencing factors on kaolinite-potassium acetate intercalation complexes

    Get PDF
    This paper presents an immersion method for preparing the kaolinite-potassium acetate intercalation complexes. The effectiveness of intercalation and influencing factors were analysed and evaluated. The results show that the intercalation of kaolinite by potassium acetate is strongly related to crystallinity of kaolinite, concentration of intercalating agent solution, aging time and pH. The well-crystallized kaolinite is conducive to intercalation by potassium acetate. A higher concentration of intercalating agent (≥30%) can complete the intercalation in a short time (<12h), but at lower concentrations intercalation took significantly longer (≥144h). The weak alkaline condition of pH=10 proved to be the most suitable environment for the formation of intercalation complex. A good intercalated complex can be obtained at room temperature

    Infrared spectroscopic study of halloysite-potassium acetate intercalation complex

    Get PDF
    Mid-infrared (MIR) and near-infrared (NIR) spectroscopy have been used to study the molecular structure of halloysite and potassium acetate intercalated halloysite and to determine the structural changes of halloysite through intercalation. The MIR spectra show all fundamental vibrations including the hydroxyl units, basic aluminosilicate framework and water molecules in the structure of halloysite and its intercalation complex. Comparison between halloysite and halloysite-potassium acetate intercalation complex shows almost all bands observed for halloysite are also observed for halloysite-potassium acetate intercalation complex apart from bands observed in the 1700-1300 cm-1 region, but with differences in band intensity. However, NIR, based on MIR spectra, provide sufficient evidence to analyze the structural changes of halloysite through intercalation. There are obvious differences between halloysite and halloysite-potassium acetate intercalation complex in the all spectral ranges. Therefore, the reproducibility of measurement and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for molecular structural analysis

    QUASI-STATIC LOCALIZED INDENTATION TESTS ON ALUMINUM HONEYCOMB SANDWICH PANEL

    No full text
    Quasi-static localized indentation tests were carried out to investigate the indentation mechanical properties of the aluminum honeycomb sandwich panels. The destruction process,failure behaviors and typical force-displacement curves were analyzed. The impact of surface plates thicknesses,aperture sizes,intender types and boundary conditions on the ultimate load and energy absorption capacity were studied. The results indicate that the aluminum honeycomb sandwich panels have two kinds of typical force-displacement curves,and six stages are presented: elastic stage,local destruction stage,intensify stage,entirely damage stage,compression density stage and bottom damage stage. Surface plates thickness and aperture size have certain influence on load bearing capability and energy absorption capacity. Indenter types have much influence on load bearing capability and rigidity,but little influence on the energy absorption capacity. Different boundary conditions and core thicknesses have less influence on strength and energy absorption capacity of aluminum honeycomb sandwich panels

    IMPACT TEST ON ALUMINUM HONEYCOMB SANDWICH PANELS

    No full text
    The dynamic mechanical properties of aluminum honeycomb sandwich panels were investigated under low velocity drop weight impact test.The failure behaviors,destruction process and typical force-displacement curves were analyzed.The impact velocities and panel thickness have influence on ultimate impact force and energy absorption was analyzed respectively.The mechanical properties of sandwich panels with corresponding panel thickness under quasi-static test were compared.The tests result show that typical impact load-displacement curve of aluminum honeycomb sandwich panels presents five stages.The ultimate impact force and energy absorption of sandwich panels under different impact velocities are basically identical.With the panel thickness increasing,ultimate impact force and energy absorption of sandwich panels increase.Compared with quasi-static experiment,the ultimate impact force and energy absorption of sandwich panels with three kinds surface thickness under low velocity drop weight impact tests are improved

    Exploring the Influence Mechanism of Meteorological Conditions on the Concentration of Suspended Solids and Chlorophyll-a in Large Estuaries Based on MODIS Imagery

    No full text
    In estuary areas, meteorological conditions have become unstable under the continuous effects of climate change, and the ecological backgrounds of such areas have strongly been influenced by anthropic activities. Consequently, the water quality of these areas is obviously affected. In this research, we identified periods of fluctuation of the general meteorological conditions in the Yangtze River Estuary using a wavelet analysis. Additionally, we performed a spatiotemporal evaluation of the water quality in the fluctuating period by using remote sensing modeling. Then, we explored how the fluctuating meteorological factors affect the distribution of total suspended solids (TSS) and chlorophyll-a (Chla) concentration. (1) The results show that from 2000 to 2015, temperature did not present significant fluctuations, while wind speed (WS) and precipitation (PR) presented the same fluctuation period from January 2012 to December 2012. (2) Based on the measured water sample data associated with Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, we developed a water quality algorithm and depicted the TSS and Chla concentrations within the WS and PR fluctuating period. (3) We found that the TSS concentration decreased with distance from the shore, while the Chla concentration showed an initially decreasing trend followed by an increasing trend; moreover, these two water quality parameters presented different inter-annual variations. Then, we discussed the correlation between the changes in the TSS and Chla concentrations and the WS and PR variables. The contribution of this research is reflected in two aspects: 1. variations in water quality parameters over a wide range of water bodies can be evaluated based on MODIS data; 2. data from different time periods showed that the fluctuations of meteorological elements had different impacts on water bodies based on the distance from the shore. The results provide new insights for the management of estuary water environments
    corecore