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Abstract:  

This paper presents an immersion method for preparing the kaolinite-potassium 

acetate intercalation complexes. The effectiveness of intercalation and influencing 

factors were analysed and evaluated. The results show that the intercalation of 

kaolinite by potassium acetate is strongly related to crystallinity of kaolinite, 

concentration of intercalating agent solution, aging time and pH. The well-crystallized 

kaolinite is conducive to intercalation by potassium acetate. A higher concentration of 

intercalating agent (≥30%) can complete the intercalation in a short time (<12h), but 

at lower concentrations intercalation took significantly longer (≥144h). The weak 

alkaline condition of pH=10 proved to be the most suitable environment for the 

formation of intercalation complex. A good intercalated complex can be obtained at 

room temperature. 
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1. Introduction  1 

Kaolinite, with the chemical composition Al2Si2O5(OH) 4, is the most abundant mineral of the 2 

kaolin group including dickite, nacrite and halloysite, and is a dioctahedral 1:1 phyllosilicate 3 

formed by superposition of silicon tetrahedral sheets and aluminum octahedral sheets. As a 4 

consequence of its tightly-packed structure, kaolinite particles are not easily delaminated and the 5 

kaolinite layers are not easily separated (Miranda-Trevino and Coles, 2003).  6 

 7 

Advances in the preparation of hybrid organic–inorganic materials by intercalation of organic 8 

molecules into kaolinite represented the possibility for developing new and interesting materials 9 

(Gardolinski et al., 1999). Lately, kaolinite has become a widely studied clay mineral noted for its 10 

unique physiochemical characteristics and versatile industrial applications (Ming, 2004). Depending 11 

on the application, kaolinite is often modified from its natural state by physical or chemical 12 

treatment to enhance the properties of the material. One of the most studied systems to date is the 13 

intercalation of synthetic polymers into layered aluminosilicates (Liu and Zhang, 2007; Letaief et 14 

al., 2008; Liu et al., 2008; Zhang et al., 2009; Cheng et al., 2010a). In this way, it is possible to 15 

produce nanocomposites that usually present unique properties with the isolated starting materials. 16 

The complexes of kaolinite intercalated by organic molecules have gained much attention over the 17 

recent decades, essentially making the clay into a single layered mineral (Frost et al., 2003; Franco 18 

et al., 2004; Gardolinski and Lagaly, 2005; Cheng et al., 2010b). 19 

 20 

Some methods for intercalation of kaolinite have been reported in which the layered kaolinite 21 

were intercalated with small molecules such as urea, potassium acetate, ammonium acetate, 22 

acrylamide, formamide, dimethylsulphoxide, etc. (Wada, 1961; Churchman et al., 1984; Frost et al., 23 

1998b; Frost et al., 1998c; Franco and Ruiz Cruz, 2004). Meanwhile, the intercalation of polymeric 24 

composites has been reported (Gardolinski et al., 2005). The process builds on the previous 25 

intercalation of the precursor with subsequent thermally induced polymerization (Gardolinski et al., 26 

1999). Potassium acetate (KAc) is an important precursor for the preparation of intercalated 27 

complexes through substitution reaction with some indirect insertion of organic molecules because 28 

KAc can directly insert into interlayer of kaolinite. Intercalation/deintercalation can enlarge the 29 
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volume of the kaolinite/organic complex and improve the traditional application. At present, the 30 

methods for the preparation of kaolinite/organics complex include pressurization, pyrogenation, 31 

agitation (Frost et al., 2000a; Franco and Ruiz Cruz, 2004; Gardolinski and Lagaly, 2005; Wang 32 

and Zhao, 2006; Elbokl and Detellier, 2008). These methods require high energy consumption and 33 

long production periods. In order to achieve 90 % intercalation, they need at least four days time 34 

using the traditional method at room temperature or at least several hours heating in a water bath 35 

(Frost et al., 2002; Kelleher and O'Dwyer, 2002; Franco et al., 2004). It is critical to find a method 36 

with less time and energy consumption. 37 

 38 

Although kaolinite-KAc intercalation complexes have been prepared in the laboratory, more 39 

detailed investigations are necessary to determine the factors which influence their preparation. The 40 

application of X-ray diffraction (XRD) to the study of intercalated kaolinite and degree of 41 

intercalation has proven to be of great value to application and scientific research. In the current 42 

study, the factors which influence the intercalation processes are investigated by XRD.  43 

 44 

2. Experimental methods 45 

2.1. Materials 46 

Three kaolinite samples (Table1) used in this study were the natural kaolin from three different 47 

areas in China, with a mean particle size of 45 μm after sieving and grading crushed ore. Their 48 

chemical compositions are shown in table 2. The potassium acetate (KAc), ammonium acetate 49 

(NH4Ac), acrylamide (AM), potassium chloride (KCl), sodium hydroxide (NaOH) and 50 

hydrochloride (HCl) were purchased from Beijing Chemical Reagents Company (China) in purities 51 

of at least 98 % and used without further treatment.  52 

 53 

2.2. Preparation of the intercalation complexes 54 

The kaolinite-KAc intercalates were prepared by immersing 10 g of kaolinite in 20 mL of KAc 55 

solution at a mass percentage concentration of 30 %. The samples were stirred for 10 minutes at 56 

room temperature. The kaolinite-NH4Ac intercalate was prepared by mixing 10 g of kaolinite with 57 
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20 mL of NH4Ac solution at a mass percentage concentration of 30 % in a container for a sufficient 58 

time (4 days) with occasional stirring to achieve maximum intercalation, at room temperature. The 59 

kaolinite-AM intercalate was prepared by stirring 10 g of kaolinite in 20 mL of AM solution at a 60 

mass percentage concentration of 30 % for 4 days, at room temperature. The kaolinite-KCl 61 

intercalation complex was also obtained by immersing 10 g of kaolinite in 20 mL of KCl solution at 62 

a mass percentage concentration of 30 %. After appropriate time, the complexes were allowed to 63 

dry at room temperature before the XRD analysis. 64 

 65 

2.3. Characterization 66 

All the samples were recovered by filtration and dried, then prepared for X-ray diffraction 67 

studies as random pressed powder. The powder X-ray diffraction (XRD) analysis was performed 68 

using a Rigaku D/max-rA X-ray diffractometer (40 kV, 100 mA) with Cu (λ=1.54178 Å) irradiation 69 

at the scanning rate of 2 °/min in the 2θ range of 2.6-50 °. 70 

 71 

2.4. Calculation the degree of intercalation 72 

According to the research by Wiewiora and Brindley (1969), the degree or extent of 73 

intercalation was determined by intercalation ratio using integrated areas of the reflections: 74 

Intercalation Ratio= [I(001)complex/(I(001)complex +I(001)kaolinite)]×100% 75 

where I(001)complex and I(001)kaolinite) represent the basal peak intensity of the complex (d～1.42 nm) and 76 

of the unexpanded kaolinite component (d～0.715 nm), respectively. 77 

 78 

3. Results and discussion 79 

3.1. Influence of the type of intercalated molecules 80 

Fig. 1 shows the XRD patterns of the intercalation complexes by the (A) KAc, (B) NH4Ac, (C) 81 

AM and (D) KCl, respectively. The XRD pattern of kaolinite-KAc intercalation complex reveals 82 

large expansions in the kaolinite structure caused by KAc intercalation. Intercalation causes a rapid 83 
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decrease in the (001) reflection of the original non-intercalated kaolinite and after 24 h intercalation 84 

nearly no intensity remains in this peak. 85 

 86 

Comparing the XRD patterns of samples with different intercalated molecules (Fig. 1), it is 87 

established that the different molecules result in different expansions after intercalation. The NH4Ac 88 

and KCl cannot be intercalated into the layers of kaolinite easily at room temperature. The 89 

intercalation ratio of kaolinite by KAc is higher than that by the others. The 0.714 nm d (001) spacing 90 

of kaolinite is expanded to 1.428 nm by KAc (Fig. 1a) which is larger than for intercalations by AM. 91 

Among these intercalating complexes, KAc appeared to be the best; it caused the largest basal 92 

spacings for kaolinite by an easier way.  93 

 94 

3.2. Influence of the solution concentration 95 

Fig. 2a shows the XRD patterns of Kz and its intercalated complex with KAc. The XRD 96 

pattern shows that the basal d (001) of kaolinite expands from 0.72 to 1.42 nm; with an increase of 97 

0.70 nm. This value is indicative of the intercalation of KAc in the interlamellar space, and this is 98 

consistent with the results published previously (Frost and Johansson, 1998; Deng et al., 2002; 99 

Franco and Ruiz Cruz, 2004). The intensity loss of peaks in the (022), (13 0), (131), (003), (13 1) 100 

and (113) reflections suggests that the well crystallized kaolinite suffers structural degradation after 101 

intercalation (Frost et al., 1998a; Frost et al., 1998c). 102 

 103 

Fig. 2a shows the variation in the peak intensity of the intercalation complexes, which are 104 

intercalated with different solution concentrations of 5 %, 10 %, 20 %, 30 %, 50 % and 75 %, 105 

respectively. It can be concluded that a higher solution concentration results an easier intercalation 106 

for kaolinite. This trend can be observed in the study for sample Kz intercalated by KAc. However, 107 

the intercalation ratio did not increase too much after 30 %, even with a KAc concentration of 75 %. 108 

From the view of green chemistry, minimizing the use of reagent, a concentration of 30 % is good 109 

enough to gain a satisfactory intercalation result.  110 

 111 

3.3. Influence of the reaction time 112 



7 

Fig. 3 shows the intercalation ratio as a function of reaction time. It can be observed that a 113 

reaction in solutions of concentrations 5% and 10% starts off slowly and remains at a low reaction 114 

level even up to 144 hours. However, only 12 hours are required to achieve 90 % intercalation ratio 115 

in the solutions concentrations of 30 % and 50 %. The intercalation ratios of 92 % remained the 116 

same even for longer reaction time. It is noticed that the greatest increase for the intercalation ratio 117 

occurs between 8 and 12 h. It is interesting to remark that the solution concentration at 30 % results 118 

a better intercalation than the other solution concentrations and 12 hours is better for the solution 119 

concentration at 30 %. 120 

According to Weiss et al. (1969) the kinetics of the intercalation reaction cannot be described 121 

as a simple diffusion process. The relationship between the fraction of reacted kaolinite and the time 122 

can be best expressed by the logarithmic equation  123 

kt )1ln(    124 

It is shown that intercalation ratio increases notably during the first hours of reaction when the 125 

mass percentage concentration of KAc solution is high, whereas the rate of intercalation remains 126 

almost unchanged even for 5 days of reaction time when the mass percentage concentration of KAc 127 

solution is low.  128 

 129 

3.4. Influence of the structural order 130 

Kaolinite is described as two kinds: low defect (ordered) kaolinite with a regular stacking 131 

sequence and high defect (disordered) kaolinite with disordered stacking. Because of the 132 

importance of estimating, even in a relative sense, the degree of disorder of a given kaolinite, 133 

empirical relations have been used. The most widely used relation for the kaolinite minerals is that 134 

proposed by Hinckley (1963).  135 

Structural order in these samples was estimated using the Hinckley index (HI) (Hinckley, 136 

1963). The samples from three different origins clearly reveal an increase in the ordering in the 137 

sense Kx<Kz<Kd. Fig. 4a shows the XRD patterns for different kaolinite types. In fact, a positive 138 

trend between the structural order and intercalation ratio is reported in Table 3. The Kz kaolinite 139 

with HI of 1.35 shows 93 % intercalation ratio. Thus, it is concluded that the well-crystallized 140 

kaolinite is propitious to intercalation by small molecules. 141 

According to the above model from Weiss et al.(1969) , the length of elastically deformed zone 142 

in the interior of the crystal is taken as the “cooperative action length” and depends on the net 143 
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increase in basal spacing as well as on the elastic properties of the layers, which are themselves 144 

related to the crystallinity of the kaolinite used: the better the crystallinity, the longer the 145 

“cooperation action length”, the faster the reaction and the higher the intercalation ratio, since the 146 

weaker cohesion on the zone of the crystal favors further penetration (Gardolinski, 2005). 147 

 148 

3.5. Influence of the temperature 149 

The XRD patterns obtained at increasing temperatures are shown in Fig. 5 which reveals a 150 

slight increase in the intensity of complex reflections between room temperature and 60 °C, due to 151 

the increase of adsorbed molecules. This probably leads to a better intercalation ratio in the packing 152 

of the kaolinite. In the range above 60 °C, the extent of intercalation decreases. Furthermore, the 153 

partial removal of KAc causes a gradual decrease in intensity of the reflections of the complex, 154 

especially for the d(001) reflections (Fig. 5a). The data indicates that the best temperature is 60 °C for 155 

preparing the kaolinite-KAc intercalation complex. 156 

This result is probably because, with the rise of temperature, the KAc molecular aggregates 157 

broke down and formed free-er molecules, which can move faster and diffuse into the interlayer of 158 

kaolinite. This is the main reason for the increase in rate of the intercalation. It is well known that 159 

the kaolinite-KAc intercalation complex is formed from expansion of kaolinite with both KAc and 160 

water molecules (Wada, 1961; Frost et al., 2000b; Cheng et al., 2010c). When the temperature of the 161 

system is at about 100 °C and water is being heated and vapour rising, the intercalation complex 162 

can not been formed. The intercalation complex will deintercalate if the reaction temperature is high. 163 

Therefore, the intercalation temperature should be below the temperature for water evaporation and 164 

deintercalation of the intercalation complex. 165 

 166 

3.6. Influence of pH 167 

The effect of pH on the intercalation of kaolinite is important; however it is not well 168 

documented yet. In the case of low pH =2.0, the reflection at 2θ=12.34 ° for the intercalated 169 

kaolinite complex can be found. However, the peak is of a much lower intensity, which indicates 170 

the very low intercalation ratio in the pH=2.0 condition. Kaolinite samples derived from a higher 171 

pH value (pH=10) exhibit a distinct intercalation with an intense reflection at 2θ=12.34° and a small 172 
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refection at 2θ=6.21° for non-intercalated kaolinite, as shown in Fig.6b. At the intermediate pH 173 

value, the intercalation ratio is upward trend, whereas this trend shows a reverse when pH>10. 174 

 175 

 This reveals that pH= 10.0 is the best pH value of those tested for intercalating KAc into 176 

kaolinite. This is may be due to two mechanisms:  177 

1) Under acidic conditions, the alumina octahedral sheet in the structure of kaolinite 178 

protonated to form the surface complex AlOH2
+ with positive charge; at the same time, the 179 

silica tetrahedral sheet in the structure of kaolinite deprotonated to form the complex SiO- 180 

with a negative charge. Therefore, two adjacent layers in kaolinite are held together by 181 

electrostatic forces, which is not conducive to intercalation. However, the two adjacent layers 182 

in kaolinite deprotonated to form the complex AlO- and SiO- with negative charge under 183 

alkaline conditions. This is beneficial to intercalation.  184 

2) Under acidic conditions, H+ and acetate (CH3COO-) form acetic acid, which is a weak acid 185 

solution. It is difficult to dissociate acetic acid under this condition, and there is not enough 186 

effective KAc molecules in the solution.  187 

 188 

4. Conclusions 189 

The immersion method was used to intercalate KAc into kaolinite, which can shorten the 190 

reaction time from several days to 12 hours and even to a few hours and the complex product with a 191 

higher intercalation ratio is acquired. Therefore it improves shortcomings of the traditional method 192 

for the superfine kaolinite by intercalation and deintercalation, which can improve the surface area 193 

of kaolinite and can be used for absorption and delamination. XRD was used to study the 194 

intercalation complexes formed from different kaolinite samples and intercalated by KAc, NH4Ac 195 

and KCl. It was found that intercalation ratio depends on several factors, some of which are related 196 

to the kaolinite properties especially the degree of ordering, whereas some other factors include the 197 

type of the regent, temperature, reaction time and pH. 198 

 199 
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Table1 Kaolin samples 281 

 282 

Kaolinite 

Sample 

Location Content of 

Kaolinite 

Mean particle 

Size 

Impurities

Kaolinite(Kz) Zhangjiakou, Hebei 

province of China 

95% -45μm Quartz 

Kaolinite(Kd) Datong, Shanxi 

province of China 

97% -45μm Quartz 

Kaolinite(Kx) Xiaoxian, Anhui 

province of China 

93% -45μm Quartz 

 283 

Table 2 The chemical composition of three kaolinites 284 

 285 

samples SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 MnO LOT 

Kz 44.64 38.05 0.22 0.06 0.11 0.27 0.08 1.13 0.13 0.002 15.06 

Kd 53.54 30.13 1.52 1.33 0.39 0.72 0.60 0.12 <0.1 0.065 11.61 

Kx 62.36 27.54 0.88 0.63 0.05 0.11 0.64 0.04 <0.1 0.117 6.91 

 286 

 287 

Table 3 Hinckley index and intercalation ratio of three kaolinites 288 

Location Anhui Xiaoxian(X) Hebei Zhangjiakou(Z) Shanxi Datong(T) 

Hinckley index 
(HI) 

1.03 1.31 1.35 

Intercalation 
ratio (%) 

56 84 93 
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Fig.1 XRD patterns of kaolinite intercalation complex by (A) KAc, (B) NH4Ac, 291 

(C) AM and (D) KCl  292 
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Fig. 2 X-ray diffraction (XRD) patterns for (a) kaolinite/potassium acetate 294 

complex and (b) the intercalation ratio curve    295 
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Fig.3 the changes of intercalation ratio with reaction time in different 299 
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Fig.4 XRD patterns for (a) three kaolinites and (b) three kaolinite-potassium 304 

acetate intercalation complexes 305 
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Fig.5 XRD patterns of (a) kaolinite/ potassium acetate intercalation composite in 308 

different temperature and (b) the curve of intercalation ratio  309 
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Fig.6 XRD patterns of (a) kaolinite/ potassium acetate intercalation composite in 313 

different pH and (b) the curve of intercalation ratio 314 
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