65 research outputs found

    Versailles Project on Advanced Materials and Standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene

    Get PDF
    We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of ∼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are ∼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are ∼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore