945 research outputs found
-dimensions Dirac fermions BEC-BCS cross-over thermodynamics
An effective Proca Lagrangian action is used to address the vector
condensation Lorentz violation effects on the equation of state of the strongly
interacting fermions system. The interior quantum fluctuation effects are
incorporated as an external field approximation indirectly through a fictive
generalized Thomson Problem counterterm background. The general analytical
formulas for the -dimensions thermodynamics are given near the unitary limit
region. In the non-relativistic limit for , the universal dimensionless
coefficient and energy gap are
reasonably consistent with the existed theoretical and experimental results. In
the unitary limit for and T=0, the universal coefficient can even
approach the extreme occasion corresponding to the infinite effective
fermion mass which can be mapped to the strongly coupled
two-dimensions electrons and is quite similar to the three-dimensions
Bose-Einstein Condensation of ideal boson gas. Instead, for , the
universal coefficient is negative, implying the non-existence of phase
transition from superfluidity to normal state. The solutions manifest the
quantum Ising universal class characteristic of the strongly coupled unitary
fermions gas.Comment: Improved versio
Quantum Entanglement of Excitons in Coupled Quantum Dots
Optically-controlled exciton dynamics in coupled quantum dots is studied. We
show that the maximally entangled Bell states and Greenberger-Horne-Zeilinger
(GHZ) states can be robustly generated by manipulating the system parameters to
be at the avoided crossings in the eigenenergy spectrum. The analysis of
population transfer is systematically carried out using a dressed-state
picture. In addition to the quantum dot configuration that have been discussed
by Quiroga and Johnson [Phys. Rev. Lett. \QTR{bf}{83}, 2270 (1999)], we show
that the GHZ states also may be produced in a ray of three quantum dots with a
shorter generation time.Comment: 16 pages, 7 figures, to appear in Phys. Rev.
Vortex structure in d-density wave scenario of pseudogap
We investigate the vortex structure assuming the d-density wave scenario of
the pseudogap. We discuss the profiles of the order parameters in the vicinity
of the vortex, effective vortex charge and the local density of states. We find
a pronounced modification of these quantities when compared to a purely
superconducting case. Results have been obtained for a clean system as well as
in the presence of a nonmagnetic impurity. We show that the competition between
superconductivity and the density wave may explain some experimental data
recently obtained for high-temperature superconductors. In particular, we show
that the d-density wave scenario explains the asymmetry of the gap observed in
the vicinity of the vortex core.Comment: 8 pages, 10 figure
Thermodynamics of an Anyon System
We examine the thermal behavior of a relativistic anyon system, dynamically
realized by coupling a charged massive spin-1 field to a Chern-Simons gauge
field. We calculate the free energy (to the next leading order), from which all
thermodynamic quantities can be determined. As examples, the dependence of
particle density on the anyon statistics and the anyon anti-anyon interference
in the ideal gas are exhibited. We also calculate two and three-point
correlation functions, and uncover certain physical features of the system in
thermal equilibrium.Comment: 18 pages; in latex; to be published in Phys. Rev.
Thermopower and thermal conductivity of superconducting perovskite
The thermopower and thermal conductivity of superconducting perovskite
( 8 K) have been studied. The thermopower is negative
from room temperature to 10 K. Combining with the negative Hall coefficient
reported previously, the negative thermopower definetly indicates that the
carrier in is electron-type. The nonlinear temperature dependence of
thermopower below 150 K is explained by the electron-phonon interaction
renormalization effects. The thermal conductivity is of the order for
intermetallics, larger than that of borocarbides and smaller than . In
the normal state, the electronic contribution to the total thermal conductivity
is slightly larger than the lattice contribution. The transverse
magnetoresistance of is also measured. It is found that the classical
Kohler's rule is valid above 50 K. An electronic crossover occures at , resulting in the abnormal behavior of resistivity, thermopower, and
magnetoresistance below 50 K.Comment: Revised on 12 September 2001, Phys. Rev. B in pres
Entanglement and Density Matrix of a Block of Spins in AKLT Model
We study a 1-dimensional AKLT spin chain, consisting of spins in the bulk
and at both ends. The unique ground state of this AKLT model is described
by the Valence-Bond-Solid (VBS) state. We investigate the density matrix of a
contiguous block of bulk spins in this ground state. It is shown that the
density matrix is a projector onto a subspace of dimension . This
subspace is described by non-zero eigenvalues and corresponding eigenvectors of
the density matrix. We prove that for large block the von Neumann entropy
coincides with Renyi entropy and is equal to .Comment: Revised version, typos corrected, references added, 31 page
Dark Matter attempts for CoGeNT and DAMA
Recently, the CoGeNT collaboration presented a positive signal for an annual
modulation in their data set. In light of the long standing annual modulation
signal in DAMA/LIBRA, we analyze the compatibility of both of these signal
within the hypothesis of dark matter (DM) scattering on nuclei, taking into
account existing experimental constraints. We consider the cases of elastic and
inelastic scattering with either spin-dependent or spin-independent coupling to
nucleons. We allow for isospin violating interactions as well as for light
mediators. We find that there is some tension between the size of the
modulation signal and the time-integrated event excess in CoGeNT, making it
difficult to explain both simultaneously. Moreover, within the wide range of DM
interaction models considered, we do not find a simultaneous explanation of
CoGeNT and DAMA/LIBRA compatible with constraints from other experiments.
However, in certain cases part of the data can be made consistent. For example,
the modulation signal from CoGeNT becomes consistent with the total rate and
with limits from other DM searches at 90% CL (but not with the DAMA/LIBRA
signal) if DM scattering is inelastic spin-independent with just the right
couplings to protons and neutrons to reduce the scattering rate on xenon.
Conversely the DAMA/LIBRA signal (but not CoGeNT) can be explained by
spin-dependent inelastic DM scattering.Comment: 20 pages, 9 figure
Large-scale pharmacogenomic study of sulfonylureas and the QT, JT and QRS intervals: CHARGE Pharmacogenomics Working Group
Sulfonylureas, a commonly used class of medication used to treat type 2 diabetes, have been associated with an increased risk of cardiovascular disease. Their effects on QT interval duration and related electrocardiographic phenotypes are potential mechanisms for this adverse effect. In 11 ethnically diverse cohorts that included 71 857 European, African-American and Hispanic/Latino ancestry individuals with repeated measures of medication use and electrocardiogram (ECG) measurements, we conducted a pharmacogenomic genome-wide association study of sulfonylurea use and three ECG phenotypes: QT, JT and QRS intervals. In ancestry-specific meta-analyses, eight novel pharmacogenomic loci met the threshold for genome-wide significance (P<5 × 10−8), and a pharmacokinetic variant in CYP2C9 (rs1057910) that has been associated with sulfonylurea-related treatment effects and other adverse drug reactions in previous studies was replicated. Additional research is needed to replicate the novel findings and to understand their biological basis
Coronal Shock Waves, EUV Waves, and Their Relation to CMEs. III. Shock-Associated CME/EUV Wave in an Event with a Two-Component EUV Transient
On 17 January 2010, STEREO-B observed in extreme ultraviolet (EUV) and white
light a large-scale dome-shaped expanding coronal transient with perfectly
connected off-limb and on-disk signatures. Veronig et al. (2010, ApJL 716, 57)
concluded that the dome was formed by a weak shock wave. We have revealed two
EUV components, one of which corresponded to this transient. All of its
properties found from EUV, white light, and a metric type II burst match
expectations for a freely expanding coronal shock wave including correspondence
to the fast-mode speed distribution, while the transient sweeping over the
solar surface had a speed typical of EUV waves. The shock wave was presumably
excited by an abrupt filament eruption. Both a weak shock approximation and a
power-law fit match kinematics of the transient near the Sun. Moreover, the
power-law fit matches expansion of the CME leading edge up to 24 solar radii.
The second, quasi-stationary EUV component near the dimming was presumably
associated with a stretched CME structure; no indications of opening magnetic
fields have been detected far from the eruption region.Comment: 18 pages, 10 figures. Solar Physics, published online. The final
publication is available at http://www.springerlink.co
Dark Matter Direct Detection Signals inferred from a Cosmological N-body Simulation with Baryons
We extract at redshift z=0 a Milky Way sized object including gas, stars and
dark matter (DM) from a recent, high-resolution cosmological N-body simulation
with baryons. Its resolution is sufficient to witness the formation of a
rotating disk and bulge at the center of the halo potential. The phase-space
structure of the central galactic halo reveals the presence of a dark disk
component, that is co-rotating with the stellar disk. At the Earth's location,
it contributes to around 25% of the total DM local density, whose value is
rho_DM ~ 0.37 GeV/cm^3. The velocity distributions also show strong deviations
from pure Gaussian and Maxwellian distributions, with a sharper drop of the
high velocity tail.
We give a detailed study of the impact of these features on the predictions
for DM signals in direct detection experiments. In particular, the question of
whether the modulation signal observed by DAMA is or is not excluded by limits
set by other experiments (CDMS, XENON and CRESST...) is re-analyzed and
compared to the case of a standard Maxwellian halo, in both the elastic and the
inelastic scattering scenarios. We find that the compatibility between DAMA and
the other experiments is improved. In the elastic scenario, the DAMA modulation
signal is slightly enhanced in the so-called channeling region, as a result of
several effects. For the inelastic scenario, the improvement of the fit is
mainly attributable to the departure from a Maxwellian distribution at high
velocity.Comment: 39 page
- …