1,637 research outputs found

    Horava Gravity and Gravitons at a Conformal Point

    Full text link
    Recently Horava proposed a renormalizable gravity theory with higher derivatives by abandoning the Lorenz invariance in UV. Here, I study the Horava model at λ=1/3\lambda=1/3, where an anisotropic Weyl symmetry exists in the UV limit, in addition to the foliation-preserving diffeomorphism. By considering linear perturbations around Minkowski vacuum, I show that the scalar graviton mode is completely disappeared and only the usual tensor graviton modes remain in the physical spectrum. The existence of the UV conformal symmetry is unique to the theory with the detailed balance and it is quite probable that λ=1/3\lambda=1/3 be the UV fixed point. This situation is analogous to λ=1\lambda=1, which is Lorentz invariant in the IR limit and is believed to be the IR fixed point.Comment: Added comments and references, Accepted in GER

    Logistic regression for simulating damage occurrence on a fruit grading line

    Get PDF
    Many factors influence the incidence of mechanical damage in fruit handled on a grading line. This makes it difficult to address damage estimation from an analytical point of view. During fruit transfer from one element of a grading line to another, damage occurs as a combined effect of machinery roughness and the intrinsic susceptibility of fruit. This paper describes a method to estimate bruise probability by means of logistic regression, using data yielded by specific laboratory tests. Model accuracy was measured via the statistical significance of its parameters and its classification ability. The prediction model was then linked to a simulation model through which impacts and load levels, similar to those of real grading lines, could be generated. The simulation output sample size was determined to yield reliable estimations. The process makes it possible to derive a suitable line design and the type of fruit that should be handled to maintain bruise levels within European Union (EU) Standards. A real example with peaches was carried out with the aid of the software implementation SIMLIN®, developed by the authors and registered by Madrid Technical University. This kind of tool has been demanded by inter-professional associations and grading lines designers in recent year

    Functional output-controllability of time-invariant singular linear systems

    Get PDF
    In the space of finite-dimensional singular linear continuous-time-invariant systems described in the form \begin{equation}\label{eq1}\left . \begin{array}{rl} E \dot x(t)&= Ax(t)+Bu(t)\\ y(t)&=Cx(t)\end{array}{\kern-1mm}\right \}\end{equation} where E,AM=Mn(C)E,A\in M=M_{n}(\mathbb{C}), BMn×m(C)B\in M_{n\times m}(\mathbb{C}), CMp×n(C)C\in M_{p\times n}(\mathbb{C}), functional output-controllability character is considered. A simple test based in the computation of the rank of a certain constant matrix that can be associated to the system is presentedPeer ReviewedPostprint (published version

    R-parity preserving super-WIMP decays

    Full text link
    We point out that when the decay of one electroweak scale super-WIMP state to another occurs at second order in a super-weak coupling constant, this can naturally lead to decay lifetimes that are much larger than the age of the Universe, and create observable consequences for the indirect detection of dark matter. We demonstrate this in a supersymmetric model with Dirac neutrinos, where the right-handed scalar neutrinos are the lightest and next-to-lightest supersymmetric partners. We show that this model produces a super-WIMP decay rate scaling as m_nu^4/(weak scale)^3, and may significantly enhance the fraction of energetic electrons and positrons over anti-protons in the decay products. Such a signature is consistent with the observations recently reported by the PAMELA experiment.Comment: 14 pages, v3 JHEP versio

    Models of electron transport in single layer graphene

    Full text link
    The main features of the conductivity of doped single layer graphene are analyzed, and models for different scattering mechanisms are presented.Comment: 15 pages. Submitted to the Proceedings of the ULTI symposium on Quantum Phenomena and Devices at Low Temperatures, Espoo, Finland, to be published in the Journ. of Low. Temp. Phy

    Extremal black holes in the Ho\v{r}ava-Lifshitz gravity

    Full text link
    We study the near-horizon geometry of extremal black holes in the z=3z=3 Ho\v{r}ava-Lifshitz gravity with a flow parameter λ\lambda. For λ>1/2\lambda>1/2, near-horizon geometry of extremal black holes are AdS2×S2_2 \times S^2 with different radii, depending on the (modified) Ho\v{r}ava-Lifshitz gravity. For 1/3λ1/21/3\le \lambda \le 1/2, the radius v2v_2 of S2S^2 is negative, which means that the near-horizon geometry is ill-defined and the corresponding Bekenstein-Hawking entropy is zero. We show explicitly that the entropy function approach does not work for obtaining the Bekenstein-Hawking entropy of extremal black holes.Comment: 18 pages, v2:some points on Lifshitz black holes claified, v3: version to appear in EJP

    Poisson Algebra of Diffeomorphism Generators in a Spacetime Containing a Bifurcation

    Full text link
    In this article we will analyze the possibility of a nontrivial central extension of the Poisson algebra of the diffeomorphism generators, which respect certain boundary conditions on the black hole bifurcation. The origin of a possible central extension in the algebra is due to the existence of boundary terms in the in the canonical generators. The existence of such boundary terms depend on the exact boundary conditions one takes. We will check two possible boundary conditions i.e. fixed bolt metric and fixed surface gravity. In the case of fixed metric the the action acquires a boundary term associated to the bifurcation but this is canceled in the Legendre transformation and so absent in the canonical generator and so in this case the possibility of a nontrivial central extension is ruled out. In the case of fixed surface gravity the boundary term in the action is absent but present in the Hamiltonian. Also in this case we will see that there is no nontrivial central extension, also if there exist a boundary term in the generator.Comment: LaTex 20 pages, some misprints corrected, 2 references added. Accepted for publication on Phys. Rev.

    Two-band second moment model and an interatomic potential for caesium

    Full text link
    A semi-empirical formalism is presented for deriving interatomic potentials for materials such as caesium or cerium which exhibit volume collapse phase transitions. It is based on the Finnis-Sinclair second moment tight binding approach, but incorporates two independent bands on each atom. The potential is cast in a form suitable for large-scale molecular dynamics, the computational cost being the evaluation of short ranged pair potentials. Parameters for a model potential for caesium are derived and tested

    Exo-hydrogenated Single Wall Carbon Nanotubes

    Full text link
    An extensive first-principles study of fully exo-hydrogenated zigzag (n,0) and armchair (n,n) single wall carbon nanotubes (Cn_nHn_n), polyhedral molecules including cubane, dodecahedrane, and C60_{60}H60_{60} points to crucial differences in the electronic and atomic structures relevant to hydrogen storage and device applications. Cn_nHn_n's are estimated to be stable up to the radius of a (8,8) nanotube, with binding energies proportional to 1/R. Attaching a single hydrogen to any nanotube is always exothermic. Hydrogenation of zigzag nanotubes is found to be more likely than armchair nanotubes with similar radius. Our findings may have important implications for selective functionalization and finding a way of separating similar radius nanotubes from each other.Comment: 5 pages, 4 postscript figures, Revtex file, To be appear in Physical Review
    corecore