136 research outputs found

    Should bike sharing continue operating during the COVID-19 pandemic? Empirical findings from Nanjing, China

    Full text link
    Coronavirus disease 2019 (COVID-19) has triggered a worldwide outbreak of pandemic, and transportation services have played a key role in coronavirus transmission. Although not crowded in a confined space like a bus or a metro car, bike sharing users will be exposed to the bike surface and take the transmission risk. During the COVID-19 pandemic, how to meet user demand and avoid virus spreading has become an important issue for bike sharing. Based on the trip data of bike sharing in Nanjing, China, this study analyzes the travel demand and operation management before and after the pandemic outbreak from the perspective of stations, users, and bikes. Semi-logarithmic difference-in-differences model, visualization methods, and statistic indexes are applied to explore the transportation service and risk prevention of bike sharing during the pandemic. The results show that pandemic control strategies sharply reduced user demand, and commuting trips decreased more significantly. Some stations around health and religious places become more important. Men and older adults are more dependent on bike sharing systems. Besides, the trip decrease reduces user contact and increases idle bikes. And a new concept of user distancing is proposed to avoid transmission risk and activate idle bikes. This study evaluates the role of shared micro-mobility during the COVID-19 pandemic, and also inspires the blocking of viral transmission within the city.Comment: 30 pages, 7 figures, 6 table

    Tera-sample-per-second arbitrary waveform generation in the synthetic dimension

    Full text link
    The synthetic dimension opens new horizons in quantum physics and topological photonics by enabling new dimensions for field and particle manipulations. The most appealing property of the photonic synthetic dimension is its ability to emulate high-dimensional optical behavior in a unitary physical system. Here we show that the photonic synthetic dimension can transform technical problems in photonic systems between dimensionalities, providing unexpected solutions to technical problems that are otherwise challenging. Specifically, we propose and experimentally demonstrate a photonic Galton board (PGB) in the temporal synthetic dimension, in which the temporal high-speed challenge is converted into a spatial fiber-optic length matching problem, leading to the experimental generation of tera-sample-per-second arbitrary waveforms. Limited by the speed of the measurement equipment, waveforms with sampling rates of up to 341.53 GSa/s are recorded. Our proposed PGB operating in the temporal synthetic dimension breaks the speed limit in a physical system, bringing arbitrary waveform generation into the terahertz regime. The concept of dimension conversion offers possible solutions to various physical dimension-related problems, such as super-resolution imaging, high-resolution spectroscopy, time measurement, etc

    Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors

    Get PDF
    This paper reports a novel and remarkably facile approach towards vertically aligned nanosheets on three-dimensional (3D) Ni foams. Conducting polypyrrole (PPy) sheets were grown on Ni foam through the volatilization of the environmentally friendly solvent from an ethanol–water solution of pyrrole (Py), followed by the polymerization of the coated Py in ammonium persulfate (APS) solution. The PPy-decorated Ni foams and commercial activated carbon (AC) modified Ni foams were employed as the two electrodes for the assembly of flexible all-solid-state asymmetric supercapacitors. The sheet-like structure of PPy and the macroporous feature of the Ni foam, which render large electrode–electrolyte interfaces, resulted in good capacitive performance of the supercapacitors. Moreover, a high energy density of ca. 14 Wh kg−1 and a high power density of 6.2 kW kg−1 were achieved for the all-solid-state asymmetric supercapacitors due to the wide cell voltage window

    Investigation of systemic immune-inflammation index, neutrophil/high-density lipoprotein ratio, lymphocyte/high-density lipoprotein ratio, and monocyte/high-density lipoprotein ratio as indicators of inflammation in patients with schizophrenia and bipolar disorder

    Get PDF
    BackgroundThe systemic immune-inflammation index (SII), system inflammation response index (SIRI), neutrophil/high-density lipoprotein (HDL) ratio (NHR), lymphocyte/HDL ratio (LHR), monocyte/HDL ratio (MHR), and platelet/HDL ratio (PHR) have been recently investigated as new markers for inflammation. The purpose of this research is to use large-scale clinical data to discuss and compare the predictive ability of the SII, SIRI, NHR, LHR, MHR, and PHR in patients with schizophrenia (SCZ) and bipolar disorder (BD), to investigate potential biomarkers.Materials and methodsIn this retrospective, naturalistic, cross-sectional study, we collected the hematological parameter data of 13,329 patients with SCZ, 4,061 patients with BD manic episodes (BD-M), and 1,944 patients with BD depressive episodes (BD-D), and 5,810 healthy subjects served as the healthy control (HC) group. The differences in the SII, SIRI, NHR, LHR, MHR, and PHR were analyzed, and a receiver operating characteristic (ROC) curve was used to analyze the diagnostic potential of these parameters.ResultsCompared with the HC group, the values of the SII, SIRI, NHR, LHR, MHR, and PHR and the levels of neutrophils, monocytes, and triglycerides (TG) were higher in SCZ and BD groups, and levels of platelets, cholesterol (CHO), HDL, low-density lipoprotein (LDL), and apoprotein B (Apo B) were lower in SCZ and BD groups. Compared to the BD group, the values of the SIRI, lymphocytes, monocytes, and HDL were lower and the values of the SII, NHR, PHR, and platelet were higher in the SCZ group. In contrast to the BD-D group, the values of the SII; SIRI; NHR; and MHR; and levels of neutrophils, monocytes, and platelets were higher in the BD-M group, and the levels of CHO, TG, LDL, and Apo B were lower in the BD-M group. The MHR and NHR were predictors for differentiating the SCZ group from the HC group; the SIRI, NHR, and MHR were predictors for differentiating the BD-M group from the HC group; and the MHR was a predictor for differentiating the BD-D group from the HC group. The combination model of the indicators improved diagnostic effectiveness.ConclusionOur study highlights the role of systemic inflammation in the pathophysiology of SCZ, BD-M, and BD-D, the association between inflammation and lipid metabolism, and these inflammation and lipid metabolism indicators showed different variation patterns in SCZ, BD-D, and BD-M

    Low Resistance Ohmic Contact to P-type Monolayer WSe2

    Full text link
    Advanced microelectronics in the future may require semiconducting channel materials beyond silicon. Two-dimensional (2D) semiconductors, characterized by their atomically thin thickness, hold immense promise for high-performance electronic devices at the nanometer scale with lower heat dissipation. One challenge for achieving high-performance 2D semiconductor field effect transistors (FET), especially for p-type materials, is the high electrical contact resistance present at the metal-semiconductor interface. In conventional bulk semiconductors, low resistance ohmic contact is realized through heavy substitutional doping with acceptor or donor impurities at the contact region. The strategy of substitutional doping, however, does not work for p-type 2D semiconductors such as monolayer tungsten diselenide (WSe2_2).In this study, we developed highly efficient charge-transfer doping with WSe2_2/α\alpha-RuCl3_3 heterostructures to achieve low-resistance ohmic contact for p-type WSe2_2 transistors. We show that a hole doping as high as 3×\times1013^{13} cm2^{-2} can be achieved in the WSe2/α_2/\alpha-RuCl3_3 heterostructure due to its type-III band alignment. It results in an Ohmic contact with resistance lower than 4 k Ohm μ\mum at the p-type monolayer WSe2_2/metal junction. at room temperature. Using this low-resistance contact, we demonstrate high-performance p-type WSe2_2 transistors with a saturation current of 35 μ\muA\cdot μ\mum1^{-1} and an ION_{ON}/IOFF_{OFF} ratio exceeding 109^9 It could enable future microelectronic devices based on 2D semiconductors and contribute to the extension of Moore's law
    corecore