295,253 research outputs found
Selecting between two transition states by which water oxidation intermediates on an oxide surface decay
While catalytic mechanisms on electrode surfaces have been proposed for
decades, the pathways by which the product's chemical bonds evolve from the
initial charge-trapping intermediates have not been resolved in time. Here, we
discover a reactive population of charge-trapping intermediates with states in
the middle of a semiconductor's band-gap to reveal the dynamics of two parallel
transition state pathways for their decay. Upon photo-triggering the water
oxidation reaction from the n-SrTiO3 surface with band-gap, pulsed excitation,
the intermediates' microsecond decay reflects transition state theory (TST)
through: (1) two distinct and reaction dependent (pH, T, Ionic Strength, and
H/D exchange) time constants, (2) a primary kinetic salt effect on each
activation barrier and an H/D kinetic isotope effect on one, and (3) realistic
activation barrier heights (0.4 - 0.5 eV) and TST pre-factors (10^11 - 10^12
Hz). A photoluminescence from midgap states in n-SrTiO3 reveals the reaction
dependent decay; the same spectrum was previously assigned by us to
hole-trapping at parallel Ti-O(dot)-Ti (bridge) and perpendicular Ti-O(dot)
(oxyl) O-sites using in situ ultrafast vibrational and optical spectroscopy.
Therefore, the two transition states are naturally associated with the decay of
these respective intermediates. Furthermore, we show that reaction conditions
select between the two pathways, one of which reflects a labile intermediate
facing the electrolyte (the oxyl) and the other a lattice oxygen (the bridge).
Altogether, we experimentally isolate an important activation barrier for water
oxidation, which is necessary for designing water oxidation catalysts with high
O2 turn over. Moreover, in isolating it, we identify competing mechanisms for
O2 evolution at surfaces and show how to use reaction conditions to select
between them
Analysis of a Classical Matrix Preconditioning Algorithm
We study a classical iterative algorithm for balancing matrices in the
norm via a scaling transformation. This algorithm, which goes back
to Osborne and Parlett \& Reinsch in the 1960s, is implemented as a standard
preconditioner in many numerical linear algebra packages. Surprisingly, despite
its widespread use over several decades, no bounds were known on its rate of
convergence. In this paper we prove that, for any irreducible (real
or complex) input matrix~, a natural variant of the algorithm converges in
elementary balancing operations, where
measures the initial imbalance of~ and is the target imbalance
of the output matrix. (The imbalance of~ is , where
are the maximum entries in magnitude in the
th row and column respectively.) This bound is tight up to the
factor. A balancing operation scales the th row and column so that their
maximum entries are equal, and requires arithmetic operations on
average, where is the number of non-zero elements in~. Thus the running
time of the iterative algorithm is . This is the first time
bound of any kind on any variant of the Osborne-Parlett-Reinsch algorithm. We
also prove a conjecture of Chen that characterizes those matrices for which the
limit of the balancing process is independent of the order in which balancing
operations are performed.Comment: The previous version (1) (see also STOC'15) handled UB ("unique
balance") input matrices. In this version (2) we extend the work to handle
all input matrice
Applications of diffraction theory to aeroacoustics
A review is given of the fundamentals of diffraction theory and the application of the theory to several problems of aircraft noise generation, propagation, and measurement. The general acoustic diffraction problem is defined and the governing equations set down. Diffraction phenomena are illustrated using the classical problem of the diffraction of a plane wave by a half-plane. Infinite series and geometric acoustic methods for solving diffraction problems are described. Four applications of diffraction theory are discussed: the selection of an appropriate shape for a microphone, the use of aircraft wings to shield the community from engine noise, the reflection of engine noise from an aircraft fuselage and the radiation of trailing edge noise
Transformation media that rotate electromagnetic fields
We suggest a way to manipulate electromagnetic wave by introducing a rotation
mapping of coordinates that can be realized by a specific transformation of
permittivity and permeability of a shell surrounding an enclosed domain. Inside
the enclosed domain, the information from outside will appear as if it comes
from a different angle. Numerical simulations were performed to illustrate
these properties.Comment: 5 pages, 3 figure
Using LIP to Gloss Over Faces in Single-Stage Face Detection Networks
This work shows that it is possible to fool/attack recent state-of-the-art
face detectors which are based on the single-stage networks. Successfully
attacking face detectors could be a serious malware vulnerability when
deploying a smart surveillance system utilizing face detectors. We show that
existing adversarial perturbation methods are not effective to perform such an
attack, especially when there are multiple faces in the input image. This is
because the adversarial perturbation specifically generated for one face may
disrupt the adversarial perturbation for another face. In this paper, we call
this problem the Instance Perturbation Interference (IPI) problem. This IPI
problem is addressed by studying the relationship between the deep neural
network receptive field and the adversarial perturbation. As such, we propose
the Localized Instance Perturbation (LIP) that uses adversarial perturbation
constrained to the Effective Receptive Field (ERF) of a target to perform the
attack. Experiment results show the LIP method massively outperforms existing
adversarial perturbation generation methods -- often by a factor of 2 to 10.Comment: to appear ECCV 2018 (accepted version
Global analysis of quadrupole shape invariants based on covariant energy density functionals
Coexistence of different geometric shapes at low energies presents a
universal structure phenomenon that occurs over the entire chart of nuclides.
Studies of the shape coexistence are important for understanding the
microscopic origin of collectivity and modifications of shell structure in
exotic nuclei far from stability. The aim of this work is to provide a
systematic analysis of characteristic signatures of coexisting nuclear shapes
in different mass regions, using a global self-consistent theoretical method
based on universal energy density functionals and the quadrupole collective
model. The low-energy excitation spectrum and quadrupole shape invariants of
the two lowest states of even-even nuclei are obtained as solutions of
a five-dimensional collective Hamiltonian (5DCH) model, with parameters
determined by constrained self-consistent mean-field calculations based on the
relativistic energy density functional PC-PK1, and a finite-range pairing
interaction. The theoretical excitation energies of the states: ,
, , , , as well as the
values, are in very good agreement with the corresponding experimental values
for 621 even-even nuclei. Quadrupole shape invariants have been implemented to
investigate shape coexistence, and the distribution of possible
shape-coexisting nuclei is consistent with results obtained in recent
theoretical studies and available data. The present analysis has shown that,
when based on a universal and consistent microscopic framework of nuclear
density functionals, shape invariants provide distinct indicators and reliable
predictions for the occurrence of low-energy coexisting shapes. This method is
particularly useful for studies of shape coexistence in regions far from
stability where few data are available.Comment: 13 pages, 3 figures, accepted for publication in Phys. Rev.
Magnetic Field Rotations in the Solar Wind at Kinetic Scales
The solar wind magnetic field contains rotations at a broad range of scales,
which have been extensively studied in the MHD range. Here we present an
extension of this analysis to the range between ion and electron kinetic
scales. The distribution of rotation angles was found to be approximately
log-normal, shifting to smaller angles at smaller scales almost self-similarly,
but with small, statistically significant changes of shape. The fraction of
energy in fluctuations with angles larger than was found to drop
approximately exponentially with , with e-folding angle at
ion scales and at electron scales, showing that large angles
() do not contain a significant amount of energy at kinetic
scales. Implications for kinetic turbulence theory and the dissipation of solar
wind turbulence are discussed
Advances in large-diameter liquid encapsulated Czochralski GaAs
The purity, crystalline perfection, and electrical properties of n- and p-type GaAs crystals grown by the liquid encapsulated Czochralski (LEC) technique are evaluated. The determination of the dislocation density, incidence of twinning, microstructure, background purity, mobility, and minority carrier diffusion length is included. The properties of the LEC GaAs crystals are generally comparable to, if not superior to those of small-diameter GaAs material grown by conventional bulk growth techniques. As a result, LEC GaAs is suitable for application to minority carrier devices requiring high-quality and large-area substrates
- …
