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APPLICATIONS OF DIFFRACTION THEORY TO AEROACOUSTICS

Donald L. Lansing
Head, Aeroacoustics Branch
Chen-Hue1 Liu
Aero-Space Technologist
Thomas D. Norum
Aero-Space Technologist
NASA Langley Research Center
Hampton, Virgimia 23365

SUMMARY

This paper reviews the fundamentals of diffraction theory and the application of the theory to
several problems of aircraft noise generation, propagation, and measurement The general acoustic dif-
fraction problem 1s defined and the governing equations set down Diffraction phenomena are 11lustrated
using the classical problem of the diffraction of a plane wave by a half-plane Infinite series and geo-
metric acoustic methods for solving diffraction problems are described Four applications of diffraction
theory are discussed the selection of an appropriate shape for a microphone, the use of aircraft wings
to shield the community from engine noise, the reflection of engine noise from an aircraft fuselage and
the radiation of trailing edge noise

INTRODUCTION

There 1s a growing appreciation for the role of diffraction phenomena 1n aircraft noise research
Diffractton occurs for example in the propagation and radiation of engine noise from 1nternal ducts, the
scattering of engine noise from aircraft wing, fuselage and tai1l surfaces, and the design and calibration
of special sensors for acoustic measurements. While diffraction theory 1s a branch of classical mathe-
matical physics with a voluminous 1iterature, most available results are for pure tone plane wave, 11ne,
or point sources diffracted by simple shapes Aeroacousticians are presented with severe challenges 1n
extending this body of work to broadband, distributed noise sources and complex aircraft geometry 1n the
presence of a turbulent moving medium

This paper 1s a blend of textbook results on diffraction theory and some current problems 1n noise
generation and measurement The literature on diffraction 1s vast Excellent bibliographies and com-
prehensive i1ntroductions to the theory can be found 1n references 1, 2, and 3 To lay a foundation for
understanding the later examples the paper begins by reviewing the essentials of diffraction theory The
governing equations are set out, the important physical phenomena are reviewed, and two solution methods
used 1n the practical applications are described Four applications of diffraction theory to aircraft
noise related problems are discussed selection of an appropriate shape for a pressure gradient micro-
phone, the reduction of community noise through wing shielding effects, the reflection of engine noise
from aircraft fuselage surfaces, and the radiation of trailing edge noise The paper provides useful
background 1nformation for the lecture by L Maestrello and A Bayliss 1n this series entitled "Acoustic
Scattering from an ElTiptical Body "

BASIC EQUATIONS OF ACOUSTIC DIFFRACTION THEORY

A sketch of the general acoustic diffraction problem and the field equations and auxiliary conditions
of diffraction theory are shown 1n Figures 1 and 2, references 2 and 3  An 1ncident sound field from
erther an 1ncoming wave or a source distribution Q 1mpinges upon a body Due to the presence of the body
a secondary or scattered field 1s produced The complete wave field 1s a superposition of the incident
and scattered fields The basic mathematical problem 1s to predict the scattered and total acoustic wave
fields

The 1nhomogeneous wave equation 1s the partial differential equation which governs the incident and
scattered sound fields The source distribution Q, when 1t occurs, appears on the right hand side of
th1s equation The physically measurable quantities 1n the sound field, that 1s, the acoustic pressure P
and the acoustic velocity vector u, are determined from the velocity potential ¢ by taking the time
derivative and gradient respectively as indicated at the bottom of Figure 1 For a solution of the field
equations to be acceptable from a physical viewpoint, the pressure and velocity must be continuous through-
out the wave field

In addition to satisfying the 1nhomogeneous wave equation, the solution must also satisfy several
aux1liary conditions Tisted in Figure 2 The first of these 1s the surface boundary condition which
states that the ratio of the normal acoustic velocity to the pressure at any point on the surface must
equal the prescribed surface admittance v On a hard surface v = 0 Nonzero and generally complex values
of v designate various degrees of absorption and compliance for nonrigid surfaces

The second condition called the radiation condition, assures that, with the exception of a prescribed
1ncident wave, the solution consists only of outgoing waves at large distances from the body That 1s,
in the acoustic far field the additional disturbance produced by the presence of the scattering object
must appear to originate at the object and produce waves which propagate away from 1t  Another way to
state the radiation condition 1s that the pressure and radial component of acoustic velocity must be 1n
phase 1n the far field The third condition, the edge condition, 1s required to ensure the uniqueness of
solutions for oroblems 1n which the scattering body has very sharp edges as when, for example, the body 1s
a thin screen or disc of zero thickness From a physical point of view the edge condition assures that no
sound energy 1s generated at a sharp edge



PLANE WAVE DIFFRACTION BY A HALF PLANE

Considerable 1nsight nto diffraction phenomena can be had by considering the problem of the di1f-
fraction of a plane acoustic wave by a very large flat surface 1dealized as a semi-infinite half plane
A two-dimensional formulation of this problem 1s shown in Figure 3  The half plane or screen 1s per-
fectly r1g1d so that the normal component of the acoustic velocity on the screen 15 zero

Consider, first of all, a description of the sound field from the standpoint of geometric acoustics
1n which 1t 1s assumed that sound travels along straight rays Then the sound field may be decomposed
into three principle regions Region I, called the geometric shadow, receives none of the incident sound
and 1s completely silent The somified region, that 1s, the region 1n which sound can be received along
straight rays from the source, consistsof two subregions Within region IT sound 15 received only from
the 1ncident plane wave Region III, however, receives not only direct radiation from the 1ncident plane
wave but also sound which 1s reflected from the lower half of the screen

This description 1s mathematically discontinuous across both the shadow boundary and the reflected
edge ray Thus, the geometric acoustic solution exhibits discrete jumps which are unacceptable physically
and theoretically The complete solution requires an additional wave field called the "diffracted wave"
which provides a smooth transition between all of the regions and makes for a solution which 1s continuous
everywhere The table at the bottom of Figure 3 summarizes the wave constituents in these three regions

The exact mathematical solution of this diffraction problem 1s shown 1n Figure 4, see references 2
and 4 The origin of the polar coordinates (r, 6) of the observer 1s at the edge of the half plane
k = w/c 15 the wave number of the 1ncident wave 1n which w 1s the angular frequency and c 1s the speed of
sound The mathematical expression 1s a solution of the wave equation whose normal derivative vanishes at
the surface of the half plane and which represents the prescribed incident plane wave The function o(x)
15 called a Fresnel integral These functions appear 1n many diffraction problems involving sharp edges
Because of their frequent occurrance 1n wave propagation problems they have been extensively tabulated
and computational subroutines have been devised for evaluating them accurately on high speed computing
machines By replacing the Fresnel integrals by their approximations for very large values of kr one
recovers precisely the geometric acoustic solution to this problem

A calculation of the mean square pressure 1n the sound field 1s shown 1n Figure 5 The calculation
1s for a normally incident sound wave as indicated in the sketch The calculation 1s made along an arc
defined by kr = 61 which corresponds to a radial distance equal to three times the wavelength of the inci-
dent sound The three regions described 1n Figure 3 are indicated at the top of the plot For reference
1t 1s useful to note the square of the pressure 1n the incident wave field 1s unity The 1intensity 1s
very low but nonzero 1n the shadow region As one crosses the shadow boundary into the sonified region
the 1ntensity increases smoothly, overshoots the intensity in the incident wave, and then settles down
after several oscillations to the incident wave value Well 1nto region III the intensity 1s characterized
by a number of large oscillations which are caused by the constructive and destructive interference between
the 1ncident wave and waves reflected from the screen The intensity maxima and minima occur at the
same angles as though the half plane was infinitely large 1n both directions

SOLUTION METHODS FOR DIFFRACTION PROBLEMS

Obtaining a solution to the inhomogeneous wave equation which satisfies the appropriate auxiliary
conditions for complex shapes and general source distributions over a wide range of frequencies is an
extremely difficult problem for which there 1s no single comprehensive method Diffraction theory 15 a
highly mathematical theory which 1s rich 1n subtle detail and great ingenuity Solution methods include
for example the Kirchhoff approximation, integral equation formulations, function theoretic methods,
series expansions, variational formulations, and ray theories In this paper two solution techniques will
be briefly described which are suitable for fairly broad classes of diffraction problems The series
method, which provides exact solutions for certain standard geometric shapes 1n the form of infinite
series, and geometric theory, which gives an approximate solution for quite general shapes at high fre-
quencies The details of these two methods will be 11lustrated for the diffraction of a plane wave by a
ri1gid circular cylinder

Series Solution Method - Consider the two-dimensional problem of the diffraction of an 1ncident plane
wave by a rigid circular cylinder of radius a as indicated 1n Figure 6, reference 4 The velocity
potential ¢ must be a solution of the homogeneous Helmholtz equation which represents an 1ncoming plane
wave and a system of outgoing scattered waves whose combination satisfies the boundar¥ condition that the
normal acoustic velocity at the surface of the cylinder vanishes A time factor e 1Wl w11l be used 1n this
paper

The velocity potential ¢ 1s represented as the sum of two potentials ¢, corresponding to the ncident
plane wave and ¢g, the scattered potential, corresponding to the sum of all reflected and diffracted waves
Choosing the plane wave to be incident on the cylinder from the negative x direction ¢, takes the form
shown 1n Figure 6 n which eg = 1 and e, = €3 = = 2 An appropriate form for ¢. 1S given by the series
at the bottom of the figure 1n which the A,'s are undetermined coefficients Each %erm in th1s 1nfinite
series 1S a solution of the wave equation which 1s finite and continuous everywhere outside of the cylinder
and which represents sound waves radiating away from the cylinder The sum ¢, + ¢ satisfies all the con-
ditions of the problem with the exception of the surface boundary condition on the cylinder

The complete expression for ¢ 1s shown 1n Figure 7 The unknown coefficients A, are now determined by
applying the boundary condition to this series expression This leads to the requirement that the Fourier
series 1n 8 be equal to zero which requires that each coefficient of the series be equal to zero The
final equation for A, 1s shown 1n the middle of Figure 7

By substituting these values for the A,'s back 1nto the series expression for ¢, one has the complete
solution to the diffraction problem The acoustic pressures and velocities can be calculated at any point
within the wave field by evaluating the appropriate infinite series expressions The infinite series 1s a
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useful means for obtaining the numerical values of the solution for small values of ka but converges very
slowly and requires many terms when ka 1s large, that 1s when the wavelength 1s much shorter than the
cylinder radius In the acoustic far field the series for the scattered pressure can be approximated as
shown at the bottom of Figure 7

Some calculations of the mean square pressure 1n tge scattered wave obtained from this series are
shown 1n Figure 8 The sketches are polar plots of |P|¢ for values of ka = 1, 3, and 5 These calcula-
tions were made using a maximum of 30 terms 1n the series which was found to be sufficient for values of
ka as high as 10 The origin of each polar plot, indicated by the heavy black dot 1n the center of each
sketch, corresponds to the center of the cylinder For values of ka less than 1, there 1s considerable
backscatter from the cylinder 1n the direction of the incoming plane wave and relatively little sound
scattered 1n the forward direction As ka 1ncreases, there 1s a tendency for the scattered wave to be
beamed 1n the forward direction with a decrease,but a growing number of lobes, 1n the relative amplitude
of the back scattered field

Geometric Theory - A wave theory solution requires solving the wave equation  Numerous methods have
been devised for finding wave solutions,but these methods generally only apply to simple geometries and
are not always useful for practical applications Keller, reference 5, introduced the geometric theory
of diffraction for solving approximately problems of wave propagation The method 1s intended to apply
to high frequency waves, or, more precisely, to problems 1n which the wavelength A 1s small compared to
the dimensions of the scattering body In many practical cases 1t has been found that the method also
gives useful results down to frequencies for which A 1s comparable to scatter dimensions An important
advantage of the geometrical theory 1s that 1t does not depend upon the separation of variables or any
similar analytical procedure The shapes of objects to which 1t can be applied are quite general

The basic 1dea of the theory 1s that short acoustic waves propagate along straight rays as 1in geometri-
cal optics However, the theory introduces new kinds of rays called "diffracted" rays In applying the
geometric theory of diffraction the field at a point 1s calculated from the sum of fields from all the
geometrical acoustics rays, 1 e , the direct and reflected rays, and all the diffracted rays The solution
of the problem of the diffraction of a plane wave by a circular cylinder in two-dimension will now be
derived using the geometric theory

First, 1t 1s necessary to calculate the wave field produced by the reflection of the incident plane
wave from the cylinder, see Figure 9 The notation of the proceeding section of the paper 1s used Let
Pr(0) denote the reflected field at a point 0 One determines the amplitude A, and the phase ¢ of this
wave as follows The amplitude of the reflected wave 1s determined by the conservation of energy along
the incident and reflected rays at point 0' That 1s, the energy flux in the tube of rays incident upon
and reflected from this point must be the same at all points along the tube The energy density along the
tube 1s 1nversely proportional to the cross-sectional area of the tube, which can be determined from the
Jacobian of the transformation hetween the physical variables (x,y)and the ray variables s and 8 The (x,y)
phase ¢ 1s assumed to be a linear function of the distance s along the reflected ray The constant sg 1s
determined by requiring that the phase of the reflected pressure at 0' be 1dentical to the phase of the
incident pressure there The final expression for the reflected pressure 1s shown at the bottom of
Figure 9 where 1t has been simplified for an observer 1n the acoustic far field In the geometric shadow
Pr(G) = 0 since there are no reflected rays there

It 1s now necessary to calculate the diffracted field induced by the cylinder The result of this
calculation 1s shown 1n Figure 10 Behind this calculation 1s significant extension of classical geometri-
cal acoustics introduced by Keller who postulates that there exists a class of diffracted rays which
account for the phenomena of diffraction These rays are produced when 1ncident rays hit edges or corners
of the scattering surface or when the incident ray impinges tangentially upon a smooth curved surface
Some of the diffracted rays penetrate 1nto the shadow regions and describe the diffracted field there
Other rays modi1fy the field in the sonified regions The value of the field on a diffracted ray 1s
obtained by multiplying the field on the incident ray at the point of diffraction of a so called "diffraction
coefficient " Diffraction coefficients are determined entirely by the local properties of the field and
the boundary 1n the immediate neighborhood at the point of diffraction and hence may be determined from
the solution of simple boundary value problems having these local properties

For the cylinder, diffracted rays emanate tangentially from all points of the cylinder surface These
rays are produced by "creeping" waves or surface waves which appear to originate at points 0y and 0o on
the upper and lower surface of the cylinder These waves encircle the cylinder 1n both directions and
continuously radiate energy so that they steadily decay as they propagate The series for the diffracted
pressure may be interpreted as the sum of infinitely many creeping waves The various orders of creeping
waves are determined by the number of times the wave has encircled the cylinder The complete solution 1s
therefore given by P,(0) + P.(0) + P4(0) which enables one to calculate the field at any point which
does not 11e on a caustic or a shadow boundary

The expression developed 1n Figures 9 and 10 wi1ll now be used to calculate the diffraction of a plane
wave by a cylinder The amplitude of the field divided by the amplitude of the incident field 1s plotted
along the x-axis for ka = 10 1n Figure 11  The solid curve 1s computed using the series method from the
preceding section of the paper The dot points are just the solution from the geometrical theory of dif-
fraction (Noted that Py = 0 1n the forward direction) The comparison 15 seen to be quite acceptable

The remainder of thi1s paper wi1ll consider four problems 1n applied acoustics 1n which diffraction
phenomena play a central role The two solution methods just described have been used to obtain theoretical
1nsight 1nto these problems

DIFFRACTION BY PRESSURE GRADIENT MICROPHONES
A photograph of a pressure gradient microphone and a sketch indicating 1ts operation are shown 1n

Figure 12 The type of microphone shown 1n the photograph has the shape of a thick disc of diameter about
2 36 cm  The purpose of this pressure sensor 1s to measure the pressure gradient in an i1ncident wave field
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as indicated in the sketch at the right The microphone consists of two pressure sensi1tive elements
separated by a distance AZ The pressure gradient at the center of the microphone, 0, 1s then given
approximately by the ratio (Pt - Pg)/AZ 1n which Pt and Pg are the pressures measured on the top and
bottom sides of the microphone TEe actual pressures measured on the surfaces of the pressure gradient
microphone w11l not be the desired free-field pressures because of diffraction effects The scattering
factor o defined at the bottom of the figure 1s a measure of the degree to which the measured pressure
difference divided by the microphone thickness approximates the true free-f1eld pressure gradient and 1s
therefore a figure of merit for the operation of a pressure gradient microphone  An analytical and
experimental investigation was undertaken 1n order to determine an optimal shape which would minimize
diffraction effects

In order to assess the effects of microphone shape upon the measured surface pressures and thereby
determine shapes which 1ntroduce minimum distortion one needs a validated analytical procedure for pre-
dicting the surface pressures on a variety of microphone shapes The shape of the pressure gradient micro-
phone in Figure 12 can be approximated as an oblate spheroid The wave equation 1s separable 1n oblate
spheroidal coordinates and the diffraction of plane waves by such a spheroid can be solved using the
series method described earlier 1n this paper, reference 6 Some coordinate lines for oblate spheroidal
coordinates (£, n) are shown 1n Figure 13  The curves & = constant are ellipses which generate oblate
spheroids when rotated about the Z axis The curves n = constant are hyperbolas Compared to polar
coordinates, the coordinate £ varies from the surface of the spheroid into the acoustic far field analogous
to the radial coordinate r whereas n varies around the spheroid analogous to the angular coordinate 6 As
a matter of reference the coordinate n decreases from +1 on the positive Z axis to 0 in the md-plane of
the spheroid to -1 on the negative Z axis

The equation for calculating surface pressures at any point n on the surface of an oblate spheroid
£ = &7 due to an 1ncident plane wave traveling 1n the negative Z direction 1s shown 1n the bottom of
Figure 13 The series converges rapidly e gg h to be conveniently evaluated by computer for values of
ka < 10  The functions Syn(-1ka, n) and RZn %-1ka, 1£7) are oblate spheroidal wave functions

In order to determine the accuracy of the series solution for predicting surface pressures an experi-
mental 1nvestigation of the diffraction of a plane wave by an oblate spheroid was conducted 1n an anechoic
chamber The spheroid used 1n the test had a major diameter of 25 4 cm and a thickness of 8 08 cm which
corresponds to a value &) = 336 The details of these measurements and a description of the experiment
are given 1n reference 6 The spheroid was 1nstrumented with seven surface pressure gauges on one side
which were used to map the surface pressures 1n detail on both the sonified and shadow sides of the
spheroid The 1ncident wave was generated by a loud speaker placed at a distance of 3 5 m from the center
of the spheroid Figure 14 shows a comparison between measured and predicted values of the ratio [Ps/P,
for several values of ka Ps 1s the surface pressure at a point on the spheroid and P, 1s the free-field
pressure at the same point 1n the absence of the spheroid At ka = 0 43 the pressure &1str1but1on around
the spheroid 1s quite uniform varying only slightly from that i1n the incident wave At ka = 2 0 con-
structive 1interference more than doubles the pressure 1n the center of the top side of the spheroid, and
a shadow begins to form on the bottom side At ka = 7 5 a large region of uniform pressure doubling
extends on the top side of the surface and a more distinct and widespread shadow region characterized by
pressures less than those 1n the 1ncident wave begins to spread over the bottom side The overall agree-
ment between theory and experiment 1s quite good over this range of ka values One can now proceed to
apply the theory to calculating surface pressures and evaluating the scattering factor for a family of
spheroidal shapes with confidence

The results of such a parameter study are shown 1n Figure 15 The parameter £; was varied from 0 to
1 producing a family of oblate spheroids The value £ = 0 corresponds to a flat t%1n disc whereas £y = 1
corresponds to a sphere The scattering factor measures the extent to which the finite difference approxi-
mation using measured surface pressures approximates the desired free-field pressure gradient at the center
of the spheroid The smaller the magnitude of the scattering factor the better the approximation The
criterton chosen to i1denti1fy an optimum shape 1s lo] < 1 over the largest possible range of the frequency
parameter F It can be seen from the figure that for the four shapes shown the spheroid corresponding to

g1 = 826 1s the best shape allowing measurement up to a value of the frequency parameter of 1 7 An
extension of these optimum shape studies to bodies of more general shapes has been carried out 1n reference 7
using a finite element technique

WING SHIELDING OF AIRCRAFT ENGINE NOISE

One method for reducing the aircraft noise received by the airport community during landing approach
and takeoff operations 1s to place the aircraft engine above the wing Observers on the ground may thereby
be shielded from the direct radiation of some engine noise by the presence of the wing surface Three
current engine over-the-wing aircraft configurations for which wing shielding may reduce community noise
are shown 1n Figure 16 The QSRA 1s a NASA research aircraft The YC-14 1s a STOL transport designed for
military use by the Boeing Commercial Aircraft Company The Jet engine exhaust close to the nozzle 1s then
above the wing which tends to block off the downward radiation of jet noise from this part of the flow
The VFW-614 has 1ts two engines mounted completely above the wing on pylons The engine inlet 1s placed
about over the mid-chord of the wing resulting, one would expect, 1n some shielding of ground observers
from the forward radiated turbomachinery noise

An experiment to measure the potential shielding effects of an aircraft wing was reported 1n refer-
ence 8 The test model and test arrangement are shown in Figure 17 The model consisted of a simulated
wing and flap system having a chord-length of about O 37 meters The wing was very long in the span-wise
direction, so as to simulate a two-dimensional arrangement The noise source was a broadband point source
placed at two positions above the wing, at 20 percent and 50 percent chord Measurements of the diffracted
sound field were made at increments of 10° from 20° to 160° below the wing as indicated in the sketch at
the right of the figure The measurements, made along an arc of radius 0 66 meters were taken 1n one-third
octave bands at frequencies from 800 to 10,000 Hz The measurements were made both with and without the
wing 1n place and the results subtracted to obtain a change 1n sound pressure level, ASPL, due to the



presence of the wing 1n the field of the point source A positive ASPL indicates the decrease in the
measured sound pressure level due to the shielding produced by the wing

Measurements of the wing shielding effect are shown in Figures 18 and 19  Figure 18 shows the dif-
ference 1n the shielding effect for the two different source positions at a frequency of 800 Hz  The
shielding effect for position II, which 1s at the md-chord Tocation, 1s symmetric about 90°  Although
there 1s a 5 dB shielding directly beneath the wing the maxtmum shielding effect, about 14 dB, occurs
symmetrically ahead of and behind the overhead position at angles of 60°and 120° The shielding effect
produced for the source at position I 1s unsymmetric about 90° The maximum shielding of about 13 dB 1s
seen to occur at about 80° These directivity patterns come about as a result of the constructive and
destructive interference which results from the superposition of waves diffracted around the leading and
trailing edges of the airfo1l  The results of the figure show that achieving a desired shielding effect
requires properly locating the wing relative to the noise source

Figure 19 shows measurements of the wing shielding effect for source position Il for frequencies of
800, 1600, and 5,000 Hz In general, as the frequency increases the amount of shielding obtained below
the wing increases As frequency increases, the shadow produced under the wing intensifies and for these
experiments, produces nearly 25 dB of noise shielding directly below the wing at 5000 Hz

Shielding effects are therefore seen to depend both upon source frequency and source position Jet
engine noise 1s both broadband 1n nature and 1s produced 1n a region which extends for considerable dis-
tance downstmeam of the jet nozzle It 1s evident, therefore, that designing for a optimum amount of
engine noise shielding will require very careful design procedures The results of a flight test program
to study shielding uti1l1zing a delta wing fighter aircraft are reported 1n reference 9

DIFFRACTION BY AN AIRCRAFT FUSELAGE

It 1s of practical interest to know whether the diffraction of aircraft noise by the fuselage, wing
and ta1l surfaces must be accounted for 1n aircraft noise prediction This 1s a difficult question to
answer since 1t 1nvolves multiple distributed sources and complex geometries The possibility of such
installation effects 1s suggested by the fact that the wavelengths of aircraft noise can be comparable to
or smaller than the characteristic dimensions of the wing and fuselage surfaces A preliminary analytical
study of the importance of scattering from the aircraft fuselage was conducted using a prolate spheroid
with acoustic point sources on one major axis, reference 10 The geometry and coordinate system for
th1s problem are shown 1n Figure 20

Several approaches for calculating the diffracted field of a point source near a prolate spheroid are
available, see for example reference 1, i1ncluding the series expansion method The method of geometric
acoustics discussed earlier in the paper was selected because of the relative simplicity of the solution.
Expressions for the sound field are obtained which can be quickly evaluated on a computer

The solution of the diffraction problem using geometric acoustics 1s given in Figure 21 A point
source 1s at Q on the major axis of the prolate spheroid The 1ncident velocity potential ¢, at the point
Py on the surface of the spheroid 1s given 1n equation 1 1n which QP; indicates the distance between points
Q and Pq

The reflected field ¢, at a point P along a reflected ray 1s given by equation 2 1n which 6 1s the
angle of 1ncidence, p1 1s the radius of curvature of the spheroid 1n the plane of incidence at Py, and o
15 the radius of curvature 1n the plane perpendicular to the plane of 1incidence and containing the norma%
to the spheroid at P In order to calculate ¢, using equation 2 when Q and P are given, three computa-
tions must be made the reflection point Py must be located, the angle of 1ncidence 6 must be determined,
and f}gally the two radi1 of curvature must be computed The details of this process are given 1n refer-
ence

To complete the calculation one must determine the diffracted field, ¢q4 The diffracted field 1s
given 1n equation 3 1n which £ and n denote prolate spheroidal coordinates of points on the spheroid
surface as.indicated 1n Figure 4 of reference 10, and d 1s the interfocal distance. The functions
fn(n) and Xp(a, B) are defined 1n reference 10 This formulation for the diffracted field 1s valid pro-

vided ka(%)z >> 1 The complete solution for the acoustic velocity potential 1s ¢4 1n the shadow region
and ¢, + ¢, + ¢4 1n the somified region

Sample calculations were made of the diffracted sound field for a spheroid which 1s the approximate
s1ze and shape of a commercial aircraft fuselage and for frequencies typical of aircraft noise Some
results of these calculations are shown 1n Figure 22 The value ka = 1000 corresponds, for example, to a
frequency of about 3500 Hz and a major ax1s of 30 meters The sketches show contours of equal sound
pressure level on an maginary observer plane below and parallel to the x, y plane, see Figure 20), at

§ = 20 The 1ntersection of the z axis with this observer plane 1s the origin of the plots All sound
pressure levels are normalized with respect to the SPL at tms reference point

The sketch at the top of Figure 22 shows the circles of constant SPL produced by a simple stationary
point source 1n the absence of the scattering body The sketch at the lower left shows the distortion
produced 1n these contours by adding the spheroid The source 1s placed at a distance equal to 0 028a
aft of the spheroid on the extension of the major axis The sketch at the Tower right shows contours for
the case of three correlated sources on the major axis of the spheroid The greater distortion of the
equal SPL contours than 1n the case of one source 1s evident The complex patterns shown here resulting
from diffraction by the fuselage are considered severe enough to warrant giving more attention to the
possible effects of the scattering of arrcraft noise by the airframe



A comparison of the geometric acoustic solution with other experimental and numerical results 1s
shown 1n Figure 23  The integral equation solution method and the details of the experiment are discussed
1n the lecture entitled, "Acoustic Scattering from an Elliptic Body" by L Maestrello and A Bayliss 1n
this lecture series The calculations are for a value ka = 164 which 1s considered sufficiently large for
the geometrical theory to be applicable. The comparison with the more exact solution of Bayliss and the
experimental data of Maestrello 1s seen to be quite acceptable except at small angles within the geometri-
cal shadow region

TRAILING EDGE NOISE RADIATION

Trailing edge noise 15 a frequently occurring source of aircraft noise which has been found for
instance on the STOL, VTOL, and CTOL configurations shown 1n Figure 24 Trailing edge noise 1s an aero-
dynamic noise source caused by the turbulent flow shed off the trailing edges of wings, flaps, or rotating
blades The readjustment process which the flow makes as 1t transitions from being constrained by a
surface to being a free shear flow results 1n the radiation of noise The turbulent flow may be either
a boundary layer flow or a wall jet flow Thus, trailing edge noise has been encountered in connection
with blown flaps used for the generation of powered 11ft, wings and flaps, from which 1t 1s a source of
airframe noise, and rotating blades for which 1t 1s a broadband noise source

The currently accepted theory of trailing edge noise generation 1s shown 1n Figure 25, see reference
11 The airfo1l 1s 1dealized as a semi-infimite flat rigid surface in a unmiform stream, Uy, parallel to
the plate A boundary layer flow develops over the upper and lower surfaces A typical turbulent eddy n
the flow field, with vorticity of w, travels downstream parallel to the plate at a velocity V As this
eddy passes across the trailing edge of the plate a counterrotating eddy 1s generated with a circulation
{2 which then proceeds to travel downstream at the velocity W The vorticity Q@ of the i1nduced eddy 1s
determined by the condition 1mposed upon the flow field at the trailing edge of the plate Two extreme
conditions have been considered a full Kutta condition, which stipulates that there will be no pressure
difference across the plate at the trailing edge and the contrary condition 1n which no vorticity at all
1s shed 1nto the wake 1n which case the pressure difference at the trailing edge of the plate becomes

infinite

The partial differential equation governing the generation and propagation of sound by turbulent
tra1ling edge eddies 1s shown 1n the center of Figure 25 The equation consists of a convective wave
operator which describes the propagation of sound through the externally moving medium and an 1nhomogeneous
term on the right hand side of the equation which 1s responsible for the generation of sound by the eddies
The two vectors w x V and @ x W each 11e 1n the plane of the sketch normal to the plate These vectors
play the role of externally applied body forces 1n the turbulent fluid surrounding the trailing edge which
act normal to the trailing edge Thus, the trailing edge noise source may be interpreted as a distribution
of dipoles 1n the wake whose strength 1s related to the vorticity in the fluid and the convection speed of
the turbulent eddies In the formulation of this theory 1t was found to be convenient to use as the
principal acoustic variable the stagnation enthalpy B 1n the flow field which 1s related to the far-field
acoustic pressure as indicated 1n the equation at the bottom of the figure 1n which M, 1s the component
of the free stream Mach number 1n the direction of the observer On the plate the normal derivative of B
vanishes

Tra1ling edge noise 1s generated then by dipoles located near the trailing edge of the plate and normal
to the plane of the plate. Because of the presence of the plate the directivity pattern of a trailing edge
dipole w11l be different than that of a free-field dipole as a result of acoustic diffraction phenomenon
The directivity of a trailing edge dipole 1s shown 1n Figure 26 The angles a and 6 defining the observer
position are shown 1n the sketch The mean square pressure 1n the acoustic far field 1s proportional to

s1h a s1n2 %- Several cross sections through the radiation pattern of such a baffled dipole are shown n

the sketches at the bottom of the figure This dipole has 1ts maximum radiation amplitude in the plane of
the plate 1n contrast to the radiation from the free-field dipole which achieves 1ts maximum along the axis
of the applied force and has no radiation perpendicular to the force axis The theory predicts that the
amplitude of the mean square pressure depends upon the boundary conditions mposed at the trailing edge

A comparison between measured and predicted directivity patterns of trailing edge noise, taken from
reference 12, 1s shown 1n Figure 27 The trailing edge noise was produced by placing a thin plate 1n a
Jet exhaust as indicated by the sketch in the middle of the figure Measurements of the radiated noise
were then taken 1n narrow bands at the six frequencies between 100 and 3,000 Hz Note that the dB levels
on the upper and lower halves of the figure are different There 1s a consistent and appreciable decrease
1n amplitude with 1ncreasing frequency At any frequency there 1s a clear tendency for the radiated noise
to peak 1n the upstream direction, as predicted by the theory. This type of evidence supports the general
correctness of the theoretical prediction of trailing edge noise radiation The additional diffraction
¥glch may be expected from the leading edge of a plate of finite length 1s discussed 1n references 12 and

CONCLUDING REMARKS

This paper has provided an 1ntroduction to the concepts and methods of diffraction theory and has
presented several examples of diffraction phenomena arising in the study of aircraft noise It has been
shown how the diffraction theory was used to select the shape of a microphone so as to extend 1ts usefulness
over the widest possible frequency range Experiments on wing shielding of engine noise show the potential
for considerable reduction of the community noise through proper engine placement The scattering of sound
from an aircraft fuselage was studied using a geometrical theory of diffraction Severe distortions of
equal sound pressure level contours were observed suggesting that the scattering of noise from the airframe
deserves more attention Experiments and theory on trailing edge noise indicate that the diffracting
effect of the wing explains the unusual cardi01d radiation pattern of this noise source The need for
more powerful theoretical methods to calculate diffraction phenomena for complex shapes and broadband
distributed sources 1s clear
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