2,270 research outputs found

    Genetic diversity of Pogonatherum paniceum (Lam.) Hack in Southwest China revealed by ISSR

    Get PDF
    Inter-simple sequence repeats markers were used to estimate the genetic diversity of Pogonatherum paniceum (Lam.) Hack. from Sichuan Province, Yunnan Province, Chongqing City and Guangxi Zhuang Autonomous Region in China. 100 primers were carried out on 22 wild populations, 14 could produce highly reproducible inter-simple sequence repeats markersbands. Out of the 239 discernable DNA fragments, 227 were polymorphic. The percentage of polymorphic bands was 94.98% at the species level. Nei’s gene diversity and Shannon information index were 0.312 and 0.471, respectively. This indicated that the genetic diversity of P. paniceum (Lam.) Hack. was low. The values of genetic identity ranged from 0.548 to 0.820 with a mean of 0.673. Nei’s genetic distance between 22 populations ranged from 0.198 to 0.601. Unweighted pair group method with arithmetic mean cluster analysis based on Nei’s genetic distance showed that most populations were positioned into the relevant areas. Significant correlation between genetic and geographic altitude distances among populations was found by Mantel test. The high score of percentage of polymorphic bands might be caused by low frequent polymorphism distributed in different populations

    Biological roles of crop NADP-malic enzymes and molecular mechanisms involved in abiotic stress

    Get PDF
    The abiotic stress tolerance of plants is very important for plant growth, development, survival and functional performance. NADP-ME is one of the most important enzymes in plants. Studying the role that NADP-malic enzyme plays in many metabolisms may help researchers improve the plant abiotic tolerance. The studies on NADP-ME in plants focus on its activity under different stresses. The regulation of NADP-ME gene expression in transgenic plants and the mechanism about abiotic stress resistance are less. In this paper, we reviewed the characteristics of the activity and genes expression of NADP-ME under drought, salt and temperature stresses. We also focused on the role of NADP-ME when it resists these varying stresses and the mechanism on how it performs.Key words: Plant NADP-malic enzyme, abiotic stress, gene expression, molecular mechanism

    Limit points of eigenvalues of (di)graphs

    Get PDF
    The study on limit points of eigenvalues of undirected graphs was initiated by A. J. Hoffman in 1972. Now we extend the study to digraphs. We prove: 1. Every real number is a limit point of eigenvalues of graphs. Every complex number is a limit point of eigenvalues of digraphs. 2. For a digraph D, the set of limit points of eigenvalues of iterated subdivision digraphs of D is the unit circle in the complex plane if and only if D has a directed cycle. 3. Every limit point of eigenvalues of a set D of digraphs (graphs) is a limit point of eigenvalues of a set of bipartite digraphs (graphs), where consists of the double covers of the members in D. 4. Every limit point of eigenvalues of a set D of digraphs is a limit point of eigenvalues of line digraphs of the digraphs in D. 5. If M is a limit point of the largest eigenvalues of graphs, then -M is a limit point of the smallest eigenvalues of graphs

    Monotone iterative procedure and systems of a finite number of nonlinear fractional differential equations

    Get PDF
    The aim of the paper is to present a nontrivial and natural extension of the comparison result and the monotone iterative procedure based on upper and lower solutions, which were recently established in (Wang et al. in Appl. Math. Lett. 25:1019-1024, 2012), to the case of any finite number of nonlinear fractional differential equations.The author is very grateful to the reviewers for the remarks, which improved the final version of the manuscript. This article was financially supported by University of Łódź as a part of donation for the research activities aimed at the development of young scientists, grant no. 545/1117

    The optical microscopy with virtual image breaks a record: 50-nm resolution imaging is demonstrated

    Full text link
    We demonstrate a new 'microsphere nanoscope' that uses ordinary SiO2 microspheres as superlenses to create a virtual image of the object in near field. The magnified virtual image greatly overcomes the diffraction limit. We are able to resolve clearly 50-nm objects under a standard white light source in both transmission and reflection modes. The resolution achieved for white light opens a new opportunity to image viruses, DNA and molecules in real time

    Caspase 3/ROCK1 pathway mediates high glucose-induced platelet microparticles shedding

    Get PDF
    Background: Platelet microparticles (PMPs) are closely associated with diabetic macrovascular complications. This study aimed to explore the underlying mechanisms of high glucose-induced PMPs generation. Methods: Washed platelets, obtained from the plasma of healthy male Sprague-Dawley rats, were incubated with high glucose. PMPs were isolated using gradient centrifugation and counted by flow cytometry. Expression and activity of ROCK1 and caspase3 were evaluated by real-time PCR, Western blotting, and activity assay kit. Results: High glucose enhanced PMPs shedding in the presence of collagen. The mRNA and protein levels of ROCK1, but not ROCK2, were increased in platelets incubated with high glucose. Y-27632, an inhibitor of ROCK, blocked the increased PMPs shedding induced by high glucose. Expression and activity of caspase3 were elevated in platelets under the high glucose conditions. Z-DVED-FMK, a caspase3 inhibitor, inhibited ROCK1 activity and decreased the PMPs generation under high glucose. Conclusion: High glucose increased PMPs shedding via caspase3-ROCK1 signal pathway

    Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis

    Get PDF
    BACKGROUND: Our previous study demonstrated that the disruption of cholesterol homeostasis promotes tubulointerstitial injury in diabetic nephropathy (DN). This study aimed to further investigate the effects of gut microbiota dysbiosis on this process and explored its potential mechanism. METHODS: Diabetic rats treated with broad-spectrum oral antibiotics or faecal microbiota transplantation (FMT) from the healthy donor group and human kidney 2 (HK-2) cells stimulated with sodium acetate were used to observe the effects of gut microbiota on cholesterol homeostasis. The gut microbiota distribution was measured by 16S rDNA sequencing with faeces. Serum acetate level was examined by gas chromatographic analysis. Protein expression of G protein coupled receptor 43 (GPR43) and molecules involved in cholesterol homeostasis were assessed by immunohistochemical staining, immunofluorescence staining, and Western Blotting. RESULTS: Depletion of gut microbiota significantly attenuated albuminuria and tubulointerstitial injury. Interestingly, serum acetate levels were also markedly decreased in antibiotics-treated diabetic rats and positively correlated with the cholesterol contents in kidneys. An in vitro study demonstrated that acetate significantly increased cholesterol accumulation in HK-2 cells, which was caused by increased expression of proteins mainly modulating cholesterol synthesis and uptake. As expected, FMT effectively decreased serum acetate levels and alleviated tubulointerstitial injury in diabetic rats through overriding the disruption of cholesterol homeostasis. Furthermore, GPR43 siRNA treatment blocked acetate-mediated cholesterol homeostasis dysregulation in HK-2 cells through decreasing the expression of proteins governed cholesterol synthesis and uptake. CONCLUSIONS: Our studies for the first time demonstrated that the acetate produced from gut microbiota mediated the dysregulation of cholesterol homeostasis through the activation of GPR43, thereby contributing to the tubulointerstitial injury of DN, suggesting that gut microbiota reprogramming might be a new strategy for DN prevention and therapy

    Morpholinium dihydrogen citrate hydrate

    Get PDF
    In the crystal structure of the title compound, [O(CH2CH2)(2)NH2][C6H7O7].H2O, the cation interacts with the negatively charged carboxylato group of adjacent anions [N...O 2.847 (3) and 2.942 (3) Angstrom], forming a linear chain running along the b axis of the crystal. Adjacent chains are linked through the carboxylic -CO2H groups and the water molecule into a layer structure

    Hormonal regulation of ovarian bursa fluid in mice and involvement of aquaporins.

    Get PDF
    In rodent species, the ovary and the end of oviduct are encapsulated by a thin membrane called ovarian bursa. The biological functions of ovarian bursa remain unexplored despite its structural arrangement in facilitating oocytes transport into oviduct. In the present study, we observed a rapid fluid accumulation and reabsorption within the ovarian bursa after ovarian stimulation (PMSG-primed hCG injection), suggesting that the ovarian bursa might play an active role in regulating local fluid homeostasis around the timing of ovulation. We hypothesized that the aquaporin proteins, which are specialized channels for water transport, might be involved in this process. By screening the expression of aquaporin family members (Aqp1-9) in the ovarian tissue and isolated ovarian bursa (0, 1, 2 and 5 h after hCG injection), we found that AQP2 and AQP5 mRNA showed dynamic changes after hCG treatment, showing upregulation at 1-2 h followed by gradually decrease at 5 h, which is closely related with the intra-bursa fluid dynamics. Further immunofluorescence examinations of AQP2 and AQP5 in the ovarian bursa revealed that AQP2 is specifically localized in the outer layer (peritoneal side) while AQP5 localized in the inner layer (ovarian side) of the bursa, such cell type specific and spatial-temporal expressions of AQP2 and 5 support our hypothesis that they might be involved in efficient water transport through ovarian bursa under ovulation related hormonal regulation. The physiological significance of aquaporin-mediated water transport in the context of ovarian bursa still awaits further clarification

    Intervention effects of Ganoderma lucidum spores on epileptiform discharge hippocampal neurons and expression of Neurotrophin-4 and N-Cadherin

    Get PDF
    Epilepsy can cause cerebral transient dysfunctions. Ganoderma lucidum spores (GLS), a traditional Chinese medicinal herb, has shown some antiepileptic effects in our previous studies. This was the first study of the effects of GLS on cultured primary hippocampal neurons, treated with Mg2+ free medium. This in vitro model of epileptiform discharge hippocampal neurons allowed us to investigate the anti-epileptic effects and mechanism of GLS activity. Primary hippocampal neurons from <1 day old rats were cultured and their morphologies observed under fluorescence microscope. Neurons were confirmed by immunofluorescent staining of neuron specific enolase (NSE). Sterile method for GLS generation was investigated and serial dilutions of GLS were used to test the maximum non-toxic concentration of GLS on hippocampal neurons. The optimized concentration of GLS of 0.122 mg/ml was identified and used for subsequent analysis. Using the in vitro model, hippocampal neurons were divided into 4 groups for subsequent treatment i) control, ii) model (incubated with Mg2+ free medium for 3 hours), iii) GLS group I (incubated with Mg2+ free medium containing GLS for 3 hours and replaced with normal medium and incubated for 6 hours) and iv) GLS group II (neurons incubated with Mg2+ free medium for 3 hours then replaced with a normal medium containing GLS for 6 hours). Neurotrophin-4 and N-Cadherin protein expression were detected using Western blot. The results showed that the number of normal hippocampal neurons increased and the morphologies of hippocampal neurons were well preserved after GLS treatment. Furthermore, the expression of neurotrophin-4 was significantly increased while the expression of N-Cadherin was decreased in the GLS treated group compared with the model group. This data indicates that GLS may protect hippocampal neurons by promoting neurotrophin-4 expression and inhibiting N-Cadherin expression
    corecore