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1 Introduction
Fractional derivatives and integrals are used for a better description of material proper-
ties. In the literature we can find many interesting papers concerning this theory; see e.g.,
[–]. The study of systems involving fractional differential/integral equations is also im-
portant as such systems occur in various problems of applied nature; for example, see [–
]. Some basic theory of fractional differential equations involving the Riemann-Liouville
differential operator can be found in [–].

In the paper we consider the following system of nonlinear fractional differential equa-
tions:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dαu(t) = f(t, u(t), u(t), . . . , un(t)), t ∈ (, T],
Dαu(t) = f(t, u(t), u(t), . . . , un(t)), t ∈ (, T],
. . . ,
Dαun(t) = fn(t, u(t), u(t), . . . , un(t)), t ∈ (, T],
t–αu(t)|t= = x

, t–αu(t)|t= = x
, . . . , t–αun(t)|t= = xn

,

(.)

where Dα is the standard Riemann-Liouville fractional derivative of order α,  ≤ α ≤ ,
T > , f i ∈ C([, T] ×R

n,R),  ≤ i ≤ n, and x
, . . . , xn

 ∈R satisfy

n∑

i=

xi
 – x

 ≥ . (.)
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We investigate system (.) with respect to the existence of a solution via the method of
upper and lower solutions. There is also presented the concept of an iterative procedure,
where the appropriately constructed sequences are convergent to the extreme solution.
The paper is a continuation of the investigations in [] of Wang et al., where the authors
examined system (.) in the case n = . After proving the main results we state, for con-
venience of the reader, the introduced techniques in the case of three nonlinear fractional
differential equations and also present a concrete example.

2 Preliminaries
First, let us recall the needed notations and crucial results which will be needed in the next
sections of the article.

Denote by C–α([, T]) the family of all functions u ∈ C((, T]) such that t–αu ∈
C([, T]). A basic theorem concerning the existence of the result and its uniqueness for
the linear fractional equation is as follows.

Lemma . ([]) Let  < α ≤ , M ∈ R, and σ ∈ C–α([, T]) be fixed. Then the linear
initial value problem

{
Dαu(t) = σ (t) – Mu(t), t ∈ (, T],
t–αu(t)|t= = u,

i, j ∈N, (.)

has a unique solution, given by the following formula:

u(t) = �(α)utα–Eα,α
(
–Mtα

)
+

∫ t


(t – s)α–Eα,α

(
–M(t – s)α

)
σ (s) ds,

where Eα,β is the Mittag-Leffler function, i.e. the function of the form

Eα,β (z) =
∞∑

k=

zk

�(αk + β)
, α,β > , z ∈R.

The comparison result for the initial value problem (.) due to Wang et al. is as follows.

Lemma . ([]) Let  < α ≤  and M ∈R be given. Then, if w ∈ C–α([, T]) satisfies
{

Dαw(t) + Mw(t) ≥ , t ∈ (, T],
t–αw(t)|t= ≥ ,

then w(t) ≥  for all t ∈ (, T].

The same authors also proved the following result, which will be needed in the sequel.

Lemma . ([]) Let  < α ≤ , M ∈ R, and N ≥  be given. Assume that u, v ∈
C–α([, T]) satisfy

⎧
⎪⎨

⎪⎩

Dαu(t) ≥ –Mu(t) + Nv(t), t ∈ (, T],
Dαv(t) ≥ –Mv(t) + Nu(t), t ∈ (, T],
t–αu(t)|t= ≥ , t–αv(t)|t= ≥ .

Then u(t) ≥ , v(t) ≥  for all t ∈ (, T].
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3 The results
In the sequel we will use the following notation:

δij =

{
 if i = j,
– if i �= j,

i, j ∈N.

C–α([, T])n denotes C–α([, T]) × C–α([, T]) × · · · × C–α([, T]) (n times).

Lemma . Let  < α ≤  be fixed, Mi ∈R, σi ∈ C–α([, T]), i = , , . . . , n. Then the linear
problem of n equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dαu(t) = σ(t) – Mu(t) –
∑n

i,j= Mjδjiui(t), t ∈ (, T],
Dαuj(t) = σj(t) + (Mj –

∑n
i= Mi)uj(t)

– Mj(
∑n

i= ui(t) – uj(t)), t ∈ (, T],  ≤ j ≤ n,
t–αui(t)|t= = xi

,  ≤ i ≤ n,

(.)

has a unique solution in C–α([, T])n.

Proof First observe that for any p, p, . . . , pn ∈ C–α([, T]) the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u + u + · · · + un = p,
u – u + · · · + un = p,
. . . ,
u + u + · · · – un = pn

(.)

has exactly one solution, which is a consequence of the fact that

det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

   · · · 
 –  · · · 
  – · · · 
...

...
...

. . .
...

   · · · –

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

n×n

= (–)n– �= .

Next, observe that system (.) can be transformed to system (.), where p, p, . . . , pn

solve the following n problems:

{
Dαp(t) = (σ(t) + σ(t) + · · · + σn(t)) – (M + M + · · · + Mn)p(t),
t–αp(t)|t= = x

 + x
 + · · · + xn

,
{

Dαp(t) = (σ(t) – σ(t) + · · · + σn(t)) – (M – M + · · · + Mn)p(t),
t–αp(t)|t= = x

 – x
 + · · · + xn

,

...
{

Dαpn(t) = (σ(t) + σ(t) + · · · – σn(t)) – (M + M + · · · – Mn)pn(t),
t–αpn(t)|t= = x

 + x
 + · · · – xn

.

Finally, observe that the solutions of the above equations are unique due to Lemma .,
which ends the proof. �
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Now we can state and proof the comparison result for system (.).

Theorem . Let  < α ≤ , M ∈ R, M, . . . , Mn ≥ , and let u, . . . , un ∈ C–α([, T]) sat-
isfy

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dαu(t) ≥ –Mu(t) +
∑n

i,j= Mjδjiui(t), t ∈ (, T],
Dαus(t) ≥ –Mus(t) + (

∑n
i= Mi – Ms)us(t)

+ Ms(
∑n

i= ui(t) – us(t)),  ≤ s ≤ n, t ∈ (, T],
t–αus(t)|t= ≥ ,  ≤ s ≤ n.

(.)

Then
n∑

i=

ui(t) ≥ , t ∈ (, T], (.)

us(t) ≥ , t ∈ (, T],  ≤ s ≤ n, (.)

–us(t) +
n∑

i=

ui(t) ≥ , t ∈ (, T],  ≤ s ≤ n. (.)

Proof Put r(t) =
∑n

s= us(t). Using (.) we obtain

Dαr(t) =
n∑

s=

Dαus(t)

≥ –Mu(t) +
n∑

i,j=

Mjδjiui(t) – M

n∑

s=

us(t) – 
n∑

s=

Msus(t)

+
n∑

s=

n∑

i=

Mius(t) +
n∑

s=

n∑

i=

Msui(t)

= –Mr(t) +
n∑

i,j=

(
Mjδjiui(t) + Miuj(t)

)
– 

n∑

s=

Msus(t) +
n∑

s=

Msr(t).

Observe that
n∑

i,j=,i�=j

(
Mjδjiui(t) + Miuj(t)

)
= . (.)

Hence, we obtain

Dαr(t) ≥ –

(

M –
n∑

s=

Ms

)

r(t) +
n∑

i,j=,i�=j

(
Mjδjiui(t) + Miuj(t)

)

+
n∑

i,j=,i=j

(
Mjδjiui(t) + Miuj(t)

)
– 

n∑

s=

Msus(t)

= –

(

M –
n∑

s=

Ms

)

r(t) + 
n∑

i=

Miui(t) – 
n∑

s=

Msus(t)

= –

(

M –
n∑

s=

Ms

)

r(t). (.)
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Moreover, observe that

t–αr(t) =
n∑

s=

t–αus(t) ≥ . (.)

Applying (.) and (.) to Lemma . we get (.).
Now, consider any  ≤ s ≤ n and denote

rs(t) =
n∑

i=

ui(t) – us(t), t ∈ (, T].

By (.) we have

Dαrs(t) =
n∑

i=

Dαui(t) – Dαus(t) = Dαu(t) +
n∑

i=

Dαui(t) – Dαus(t)

≥ –Mu(t) +
n∑

i,j=

Mjδjiui(t) –
n∑

i=

Mui(t) + Mus(t)

+
n∑

i=

( n∑

j=

Mj – Mi

)

ui(t) –

( n∑

j=

Mj – Ms

)

us(t)

+
n∑

i=

Mi

( n∑

j=

uj(t) – ui(t)

)

– Ms

( n∑

j=

uj(t) – us(t)

)

= –Mu(t) +
n∑

i,j=

(
Mjδjiui(t) + Mjui(t)

)
– M

n∑

i=

ui(t) + Mus(t) + Msus(t)

– 
n∑

i=

Miui(t) – us(t)
n∑

j=

Mj +
n∑

i=

n∑

j=

Miuj(t) – Msrs(t).

Again, using (.), we obtain

Dαrs(t) ≥ –M

n∑

i=

ui(t) + Mus(t) + Msus(t) – us(t)
n∑

j=

Mj

+
n∑

i=

Mirs(t) + us(t)
n∑

i=

Mi – Msrs(t)

= –

(

M –
n∑

i=

Mi + Ms

)

rs(t) + Msus(t). (.)

Moreover, observe that (.) implies

Dαus(t) ≥ –

(

M –
n∑

i=

Mi + Ms

)

us(t) + Msrs(t). (.)

Finally, note that (.) and (.) applied to Lemma . give (.) and (.). �

Now, we are in a position to enunciate the main result.
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Theorem . Suppose that there exist u
, u

, . . . , un
 ∈ C–α([, T]), u

 ≤ ∑n
i= ui

, satisfy-
ing

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dαu
(t) ≤ f(t, u

(t), u
(t), . . . , un

(t)), t ∈ (, T],
Dαus

(t) ≥ fs(t, u
(t), u

(t), . . . , un
(t)), t ∈ (, T],  ≤ s ≤ n,

t–αu
(t)|t= ≤ x

,
t–αus

(t)|t= ≥ xs
,  ≤ s ≤ n,

(.)

and there exist M ∈R, M, . . . , Mn >  such that
(i)

f(t,α, . . . ,αn) – f(t,β, . . . ,βn) ≥ –M(α – β) –
n∑

i,j=

Mjδji(αi – βi), (.)

(ii)

fs(t,α, . . . ,αn) – fs(t,β, . . . ,βn)

≥
(

–M +
n∑

i=

Mi – Ms

)

(αs – βs) – Ms

(

α – β + αs – βs –
n∑

i=

(αi – βi)

)

,

where αi,βi ∈R,  ≤ i ≤ n satisfy for all t ∈ [, T] and  ≤ s ≤ n,

u
(t) –

( n∑

i=

ui
(t) – us

(t)

)

≤ β –

( n∑

i=

βi – βs

)

≤ α –

( n∑

i=

αi – αs

)

≤ us
(t),

u
(t) –

( n∑

i=

ui
(t) – us

(t)

)

≤ αs ≤ βs ≤ us
(t),

(iii)

n∑

s=

fs
(
t, u(t), u(t), . . . , un(t)

)
– f

(
t, u(t), u(t), . . . , un(t)

)

≥
(

–M +
n∑

s=

Ms

)( n∑

s=

us(t) – u(t)

)

, (.)

where

u
 –

( n∑

i=

ui
 – us



)

≤ u –

( n∑

i=

ui – us

)

≤ us ≤ us
,  ≤ s ≤ n.

Then there exists a solution (ū, ū, . . . , ūn) of system (.) such that

(n – )u
 – (n – )

n∑

i=

ui
 ≤ ū ≤

n∑

i=

ui
, u

 –
n∑

i=

ui
 + us

 ≤ ūs ≤ us
,  ≤ s ≤ n.

Moreover, there exist iterative sequences (u
k), (u

k), . . . , (un
k ) such that ui

k → ūi, k → ∞, i =
, , . . . , n, uniformly on compact subsets of (, T].



Wardowski Advances in Difference Equations  (2015) 2015:167 Page 7 of 16

Proof Let us first consider the linear system of the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dαu(t) = f(t, u
(t), u

(t), . . . , un
(t)) + Mu

(t) +
∑n

i,j= Mjδjiui
(t)

– Mu(t) –
∑n

i,j= Mjδjiui(t), t ∈ (, T],
Dαus(t) = fs(t, u

(t), u
(t), . . . , un

(t)) + Mus
(t) + (

∑n
i= Mi – Ms)us(t)

+ Ms(u
(t) +

∑n
i= ui(t) – us(t)) – Mus(t) – (

∑n
i= Mi – Ms)us

(t)
– Ms(u(t) +

∑n
i= ui

(t) – us
(t)), t ∈ (, T],  ≤ s ≤ n,

t–αus(t)|t= = xs
,  ≤ s ≤ n,

(.)

where u, u, . . . , un ∈ C–α([, T]). Due to Lemma . there exists a system of solutions
(u

, u
 , . . . , un

 ) ∈ C([, T])n for system (.). Using induction we obtain the sequence
(u

k , u
k , . . . , un

k ) ∈ C([, T])n, k ∈N, satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dαu
k(t) = f(t, u

k–(t), u
k–(t), . . . , un

k–(t)) + Mu
k–(t) +

∑n
i,j= Mjδjiui

k–(t)
– Mu

k(t) –
∑n

i,j= Mjδjiui
k(t), t ∈ (, T],

Dαus
k(t) = fs(t, u

k–(t), u
k–(t), . . . , un

k–(t)) + Mus
k–(t)

+ (
∑n

i= Mi – Ms)us
k(t) + Ms(u

k–(t) +
∑n

i= ui
k(t) – us

k(t))
– Mus

k(t) – (
∑n

i= Mi – Ms)us
k–(t)

– Ms(u
k(t) +

∑n
i= ui

k–(t) – us
k–(t)), t ∈ (, T],  ≤ s ≤ n,

t–αus
k(t)|t= = xs

,  ≤ s ≤ n.

(.)

Now, put p
 = u

 – u
, ps

 = us
 – us

,  ≤ s ≤ n. From (.) and (.), for all t ∈ (, T], we
obtain

Dαp
(t) = Dαu

(t) – Dαu
(t)

= f
(
t, u

(t), u
(t), . . . , un

(t)
)

+ Mu
(t) +

n∑

i,j=

Mjδjiui
(t)

– Mu
(t) –

n∑

i,j=

Mjδjiui
(t) – Dαu

(t)

≥ –Mp
(t) +

n∑

i,j=

Mjδjipi
(t),

Dαps
(t) = Dαus

(t) – Dαus
(t)

= Dαus
(t) – fs

(
t, u

(t), u
(t), . . . , un

(t)
)

– Mus
(t)

–

( n∑

i=

Mi – Ms

)

us
(t) – Ms

(

u
(t) +

n∑

i=

ui
(t) – us

(t)

)

+ Mus
(t)

+

( n∑

i=

Mi – Ms

)

us
(t) + Ms

(

u
(t) +

n∑

i=

ui
(t) – us

(t)

)

≥ –Mps
(t) +

( n∑

i=

Mi – Ms

)

ps
(t) + Ms

( n∑

i=

pi
(t) – ps

(t)

)

for all  ≤ s ≤ n,

t–αp
(t)|t= = t–αu

(t)|t= – t–αu
(t)|t= ≥ x

 – x
 = ,

t–αps
(t)|t= = t–αus

(t)|t= – t–αus
(t)|t= ≥ xs

 – xs
 = ,  ≤ s ≤ n.
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Hence, using Theorem ., we have

us
 ≤ us

,  ≤ s ≤ n (.)

and

u
 – u

 +
n∑

i=

(
ui

 – ui

) ≥ us

 – us
,  ≤ s ≤ n. (.)

Consider now q =
∑n

i= ui
 – u

. Using (.) and (.) we have

Dαq(t) =
n∑

s=

us
(t) – u

(t) =
n∑

s=

Dαus
(t) – Dαu

(t)

=
n∑

s=

fs
(
t, u

(t), u
(t), . . . , un

(t)
)

+
n∑

s=

Mus
(t)

+
n∑

s=

( n∑

i=

Mi – Ms

)

us
(t) +

n∑

s=

Ms

(

u
(t) +

n∑

i=

ui
(t) – us

(t)

)

–
n∑

s=

Mus
(t) –

n∑

s=

( n∑

i=

Mi – Ms

)

us
(t)

–
n∑

s=

Ms

(

u
(t) +

n∑

i=

ui
(t) – us

(t)

)

– f
(
t, u

(t), u
(t), . . . , un

(t)
)

– Mu
(t) –

n∑

i,j=

Mjδjiui
(t) + Mu

(t) +
n∑

i,j=

Mjδjiui
(t)

=
n∑

s=

fs
(
t, u

(t), u
(t), . . . , un

(t)
)

– f
(
t, u

(t), u
(t), . . . , un

(t)
)

–

(

M –
n∑

s=

Ms

)

q(t) +

(

M –
n∑

s=

Ms

)( n∑

s=

us
(t) – u

(t)

)

≥ –

(

M –
n∑

s=

Ms

)

q(t).

Moreover, (.) implies

t–αq(t)|t= =
n∑

i=

t–αui
(t)|t= – t–αu

(t)|t= =
n∑

i=

xi
 – x

 ≥ .

Now, from Lemma . we conclude

u
(t) ≤

n∑

i=

ui
(t) for all t ∈ [, T]. (.)

Combining (.) and (.) with (.) we obtain for all  ≤ s ≤ n the inequalities

u
 –

( n∑

i=

ui
 – us



)

≤ u
 –

( n∑

i=

ui
 – us



)

≤ us
 ≤ us

.
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Let  ≤ s ≤ n be fixed and suppose now that for some k ∈ N the following inequalities
hold:

u
k– –

( n∑

i=

ui
k– – us

k–

)

≤ u
k –

( n∑

i=

ui
k – us

k

)

≤ us
k ≤ us

k–. (.)

Denote p
k+ = u

k+ –u
k , ps

k+ = us
k –us

k+,  ≤ s ≤ n. From (.), (.), and (.) we obtain

Dαp
k+(t) = Dαu

k+(t) – Dαu
k(t)

= f
(
t, u

k(t), u
k(t), . . . , un

k (t)
)

+ Mu
k(t) +

n∑

i,j=

Mjδjiui
k(t) – Mu

k+(t)

–
n∑

i,j=

Mjδjiui
k+(t) – f

(
t, u

k–(t), u
k–(t), . . . , un

k–(t)
)

– Mu
k–(t)

–
n∑

i,j=

Mjδjiui
k–(t) + Mu

k(t) +
n∑

i,j=

Mjδjiui
k(t)

≥ –M
(
u

k(t) – u
k–(t)

)
–

n∑

i,j=

Mjδji
(
ui

k(t) – ui
k–(t)

)
+ Mu

k(t)

+
n∑

i,j=

Mjδjiui
k(t) – Mu

k+(t) –
n∑

i,j=

Mjδjiui
k+(t) – Mu

k–(t)

–
n∑

i,j=

Mjδjiui
k–(t) + Mu

k(t) +
n∑

i,j=

Mjδjiui
k(t)

= –Mp
k+(t) +

n∑

i,j=

Mjδjipi
k+(t),

Dαps
k+(t) = Dαus

k(t) – Dαus
k+(t)

≥
(

–M +
n∑

i=

Mi – Ms

)
(
us

k–(t) – us
k(t)

)
– Ms

(

u
k–(t) – u

k(t)

+ us
k–(t) – us

k(t) –
n∑

i=

(
ui

k– – ui
k
)
)

+ Mus
k–(t) +

( n∑

i=

Mi – Ms

)

us
k(t)

+ Ms

(

u
k–(t) +

n∑

i=

ui
k(t) – us

k(t)

)

– Mus
k(t) –

( n∑

i=

Mi – Ms

)

us
k–(t)

– Ms

(

u
k(t) +

n∑

i=

ui
k–(t) – us

k–(t)

)

– Mus
k(t) –

( n∑

i=

Mi – Ms

)

us
k+(t)

– Ms

(

u
k(t) +

n∑

i=

ui
k+(t) – us

k+(t)

)

+ Mus
k+(t) +

( n∑

i=

Mi – Ms

)

us
k(t)

+ Ms

(

u
k+(t) +

n∑

i=

ui
k(t) – us

k(t)

)

= –Mps
k+(t) +

( n∑

i=

Mi – Ms

)

ps
k+(t) + Ms

( n∑

i=

pi
k+(t) – ps

k+(t)

)

.
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Also observe that t–αp
k+(t)|t= = t–αps

k+(t)|t= = , which, together with the above, due
to Theorem ., gives

us
k+ ≤ us

k ,  ≤ s ≤ n, (.)

us
k – us

k+ ≤
n∑

i=

(
ui

k – ui
k+

)
+ u

k+ – u
k . (.)

Consider now qk =
∑n

i= ui
k – u

k . Using the same arguments as with q we obtain

Dαqk(t) ≥ –

(

M –
n∑

s=

Ms

)

qk(t)

and

t–αqk(t)|t= ≥ ,

which, due to Lemma ., gives

u
k ≤

n∑

s=

ui
k . (.)

Summarizing, by (.)-(.) and induction, we obtain the following inequalities de-
scribing the sequences (us

k)k∈N∪{}:

u
 –

( n∑

i=

ui
 – us



)

≤ u
 –

( n∑

i=

ui
 – us



)

≤ · · · ≤ u
k –

( n∑

i=

ui
k – us

k

)

≤ us
k ≤ · · · ≤ us

 ≤ us
, (.)

where  ≤ s ≤ n. The inequalities (.) imply

lim
k→∞

us
k(t) = ūs(t), s = , . . . , n.

Observe that

u
 –

( n∑

i=

ui
 – us



)

≤ ūs ≤ us
, s = , . . . , n.

In order to show that the sequence (u
k) is convergent observe first that from (.) there

exists a function x∗ such that

lim
k→∞

(

u
k(t) –

n–∑

i=

ui
k(t)

)

= x∗(t).
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Hence, putting ū = x∗ +
∑n–

s= ūs, we have

lim
k→∞

(
u

k(t) – ū(t)
)

= lim
k→∞

(

u
k(t) – x∗(t) –

n–∑

s=

ūs(t) +
n–∑

s=

us
k(t) –

n–∑

s=

us
k(t)

)

= lim
k→∞

(

u
k(t) –

n–∑

s=

us
k(t) – x∗(t) +

n–∑

s=

(
us

k(t) – ūs(t)
)
)

= lim
k→∞

(

u
k(t) –

n–∑

s=

us
k(t) – x∗(t)

)

+
n–∑

s=

lim
k→∞

(
us

k(t) – ūs(t)
)

= .

In order to show the uniform convergence of sequences (u
k), (u

k), . . . , (un
k ), observe that

from (.) and from the fact that us
k → ūs, s = , , . . . , n, we have

ūs ≤ us
k ≤ · · · ≤ us

 ≤ us
 for all k ∈N.

Then, the uniform convergence of sequences (us
k), s = , , . . . , n, on a compact subset of

(, T] is a straightforward consequence of Dini’s theorem, which states that if a mono-
tone sequence of continuous functions is convergent on a compact set, then it converges
uniformly.

Showing a uniform convergence of (u
k) requires some observations. Take any  ≤ s ≤ n

and denote

hk = u
k –

( n∑

i=

ui
k – us

k

)

, k ∈N∪ {}.

From (.) and the convergence of (u
k), . . . , (un

k ) we have

h ≤ h ≤ · · · ≤ hk ≤ ū –

( n∑

i=

ūi – ūs

)

.

Applying again Dini’s result we get the uniform convergence of (hk) on every compact
subset of (, T]. Finally note that

u
k = hk +

( n∑

i=

ui
k – us

k

)

, k ∈N,

and thus (u
k) is uniformly convergent on a compact subset of (, T] to ū as a linear com-

bination of sequences uniformly convergent.
Moreover, observe that the limit functions satisfy the properties

(n – )u
 – (n – )

n∑

i=

ui
 ≤ ū ≤

n∑

i=

ui
,

u
 –

n∑

i=

ui
 + us

 ≤ ūs ≤ us
,  ≤ s ≤ n.
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Taking k to ∞ in (.) we see that (ū, ū, . . . , ūn) is a system of solutions of system (.).
Also observe that from (.) we have the following relations between the limit functions:

ū –

( n∑

i=

ūi – ūs

)

≤ ūs,  ≤ s ≤ n,

which ends the proof. �

Remark . Observe that using the same methods as in the proof of Theorem . we can
see that (ū, ū, . . . , ūn) is an extremal solution of system (.) in the sense that if (u, . . . , un)
were any other solution such that

u
 –

( n∑

i=

ui
 – us



)

≤ u –

( n∑

i=

ui – us

)

≤ us
, u

 –

( n∑

i=

ui
 – us



)

≤ us ≤ us


for any  ≤ s ≤ n, then we would have

ū –

( n∑

i=

ūi – ūs

)

≤ u –

( n∑

i=

ui – us

)

, us ≤ ūs,  ≤ s ≤ n.

4 The system of three fractional differential equations
In order to see the nature of the iterative procedure introduced in the proof of Theo-
rem ., we consider the case n = .

Corollary . If there exist u, v, w ∈ C–α([, T]), u ≤ v + w such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dαu(t) ≤ f (t, u(t), v(t), w(t)), t ∈ (, T],
Dαv(t) ≥ g(t, u(t), v(t), w(t)), t ∈ (, T],
Dαw(t) ≥ h(t, u(t), v(t), w(t)), t ∈ (, T],
t–αu(t)|t= ≤ x,
t–αv(t)|t= ≥ y,
t–αw(t)|t= ≥ z,

(.)

and there exist M ∈ R, N , S ≥  satisfying

f (t,α,α,α) – f (t,β,β,βn) ≥ –M(α – β) + (–N + S)(α – β) + (N – S)(α – β),

g(t,α,α,α) – g(t,β,β,β) ≥ –N(α – β) + (–M + S)(α – β) + N(α – β),

h(t,α,α,α) – h(t,β,β,β) ≥ –S(α – β) + S(α – β) + (–M + N)(α – β),

where αi,βi ∈R,  ≤ i ≤  satisfy, for all t ∈ [, T],

u(t) – w(t) ≤ β – β ≤ α – α ≤ v(t), u(t) – w(t) ≤ α ≤ β ≤ v(t),

u(t) – v(t) ≤ β – β ≤ α – α ≤ w(t), u(t) – v(t) ≤ α ≤ β ≤ w(t)

and

(g + h – f )(t, u, v, w) ≥ (–M + N + S)(v + w – u), (.)
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where

u(t) – w(t) ≤ u – w ≤ v ≤ v(t),

u(t) – v(t) ≤ u – v ≤ w ≤ w(t).

Then there exists a solution

(
u∗, v∗, w∗) ∈ [u – v – w, v + w] × [u – w, v] × [u – v, w]

of (.) and the sequences (un) ⊆ [u – v – w, v + w], (vn) ⊆ [u – w, v], (wn) ⊆
[u – v, w] such that un → u∗, vn → v∗, wn → w∗ uniformly on compact subsets of (, T].
Moreover, the following inequalities hold:

u – v ≤ u – v ≤ · · · ≤ un – vn ≤ · · · ≤ u∗ – v∗ ≤ w∗ ≤ · · · ≤ wn ≤ · · · ≤ w ≤ w,

u – w ≤ u – w ≤ · · · ≤ un – wn ≤ · · · ≤ u∗ – w∗ ≤ v∗ ≤ · · · ≤ vn ≤ · · · ≤ v ≤ v.

4.1 Example
Consider the nonlinear problem of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D.u(t) = �(.)–v(t) – �(.)–w(t) + (v(t) – t) + (t – w(t) + u(t)),
D.v(t) = �(.)–v(t) + (v(t) – t) + (t – w(t) + u(t)),
D.w(t) = –�(.)–u(t) + �(.)–v(t) + (t – w(t) + u(t)),
t.u(t)|t= = t.v(t)|t= = t.w(t)|t= = ,

(.)

where t ∈ [, ]. Taking

f (t, u, v, w) = �(.)–v – �(.)–w + (v – t) + (t – w + u),

g(t, u, v, w) = �(.)–v + (v – t) + (t – w + u),

h(t, u, v, w) = –�(.)–u + �(.)–v + (t – w + u)

and

u(t) = , v(t) = w(t) = t, t ∈ [, ],

we obtain, for all t ∈ [, ],

D.u(t) =  = f
(
t, u(t), v(t), w(t)

)
,

D.v(t) =
√

t
�(.)

≥ t
�(.)

= g
(
t, u(t), v(t), w(t)

)
,

D.w(t) =
√

t
�(.)

≥  = h
(
t, u(t), v(t), w(t)

)
.

Next, for all αi,βi ∈R,  ≤ i ≤  such that

– t ≤ β – β ≤ α – α ≤ t, –t ≤ α ≤ β ≤ t,

– t ≤ β – β ≤ α – α ≤ t, –t ≤ α ≤ β ≤ t,
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one can calculate that

f (t,α,α,α) – f (t,β,β,β) ≥ �(.)–(α – β) – �(.)–(α – β),

g(t,α,α,α) – g(t,β,β,β) ≥ �(.)–(α – β),

h(t,α,α,α) – h(t,β,β,β) ≥ –�(.)–(α – β) + �(.)–(α – β).

Therefore it is sufficient to take in Corollary . M = , N = , S = �(.)–. Finally observe
that condition (.) also holds. Thus, the system of fractional differential equations (.)
has a solution (u∗, v∗, w∗) ∈ [–t, t] × [–t, t] × [–t, t].

Now, using the proof of Theorem . and Lemma ., we can derive the iterative pro-
cedure (uk , vk , wk) convergent to the solution (u∗, v∗, w∗). First observe that the sequences
(uk), (vk), (wk) satisfy the following system of linear equations:

D.uk = f (t, uk–, vk–, wk–) – �(.)–vk– + �(.)–wk– + �(.)–vk – �(.)–wk ,

D.vk = g(t, uk–, vk–, wk–) – �(.)–vk– + �(.)–vk ,

D.wk = h(t, uk–, vk–, wk–) + �(.)–uk– – �(.)–vk– – �(.)–uk + �(.)–vk ,

t.uk(t)|t= = t.vk(t)|t= = t.wk(t)|t= = ,

which can be equivalently transformed to the system
⎧
⎪⎨

⎪⎩

uk + vk + wk = pk ,
uk – vk + wk = qk ,
uk + vk – wk = rk ,

where pk , qk , rk are the solutions of the following systems:
⎧
⎪⎨

⎪⎩

D.pk = (f + g + h)(t, uk–, vk–, wk–)
+ �(.)–uk– – �(.)–vk– + �(.)–wk– – �(.)–pk ,

t.pk(t)|t= = ,
⎧
⎪⎨

⎪⎩

D.qk = (f – g + h)(t, uk–, vk–, wk–)
+ �(.)–uk– – �(.)–vk– + �(.)–wk– – �(.)–qk ,

t.qk(t)|t= = ,
⎧
⎪⎨

⎪⎩

D.rk = (f + g – h)(t, uk–, vk–, wk–)
– �(.)–uk– – �(.)–vk– + �(.)–wk– + �(.)–rk ,

t.rk(t)|t= = .

The solutions of the above systems, due to Lemma ., are given by the formulas

pk(t) =
∫ t


(t – s)–.E.,.

(
–�(.)–(t – s).)((f + g + h)

(
s, uk–(s), vk–(s), wk–(s)

)

+ �(.)–uk–(s) – �(.)–vk–(s) + �(.)–wk–(s)
)

ds,

qk(t) =
∫ t


(t – s)–.E.,.

(
–�(.)–(t – s).)((f – g + h)

(
s, uk–(s), vk–(s), wk–(s)

)

+ �(.)–uk–(s) – �(.)–vk–(s) + �(.)–wk–(s)
)

ds,
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rk(t) =
∫ t


(t – s)–.E.,.

(
�(.)–(t – s).)((f + g – h)

(
s, uk–(s), vk–(s), wk–(s)

)

– �(.)–uk–(s) – �(.)–vk–(s) + �(.)–wk–(s)
)

ds.

In consequence, the iterative sequences are of the form

uk(t) =



(qk + rk)

=



∫ t


(t – s)–.[E.,.

(
–�(.)–(t – s).)((f – g + h)

(
s, uk–(s), vk–(s), wk–(s)

)

+ �(.)–uk–(s) – �(.)–vk–(s) + �(.)–wk–(s)
)

+ Eα,α
(
�.–(t – s)α

)(
(f + g – h)

(
s, uk–(s), vk–(s), wk–(s)

)

– �(.)–uk–(s) – �(.)–vk–(s) + �(.)–wk–(s)
)]

ds,

vk(t) =



(pk – qk)

=



∫ t


(t – s)–.[E.,.

(
–�(.)–(t – s).)((f + g + h)

(
s, uk–(s), vk–(s), wk–(s)

)

+ �(.)–uk–(s) – �(.)–vk–(s) + �(.)–wk–(s)
)

– E.,.
(
–�(.)–(t – s).)((f – g + h)

(
s, uk–(s), vk–(s), wk–(s)

)

+ �(.)–uk–(s) – �(.)–vk–(s) + �(.)–wk–(s)
)]

ds,

wk(t) =



(pk – rk)

=



∫ t


(t – s)–.[E.,.

(
–�(.)–(t – s).)((f + g + h)

(
s, uk–(s), vk–(s), wk–(s)

)

+ �(.)–uk–(s) – �(.)–vk–(s) + �(.)–wk–(s)
)

– E.,.
(
�(.)–(t – s).)((f + g – h)

(
s, uk–(s), vk–(s), wk–(s)

)

– �(.)–uk–(s) – �(.)–vk–(s) + �(.)–wk–(s)
)]

ds.
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