623 research outputs found
Improvement of gums in physicochemical and rheological properties of barley-fortified saltine cracker dough
Effects of hydrocolloids (arabic gum, guar gum, and xanthan gum) on the physicochemical and rheological properties of whole-barley fortified cracker flour were determined using solvent retention capacity, alveograph, and Mixolab profiles. Results showed that the water absorption of whole-barley fortified cracker flour was reduced by the additional arabic gum. Besides, arabic gum was more effective in reducing the resistance to inflation and improving the extensibility of whole-barley fortified dough. Mixolab parameters indicated that the weakening of gluten proteins and the rate of starch retrogradation in whole-barley fortified cracker dough were reduced by the presence of arabic gum. Guar gum and xanthan gum promoted the rate of protein breakdown, but slowed down the starch gelatinization and retrogradation rate during the Mixolab heating-cooling cycle. In conclusion, involved arabic gum rather than guar gum or xanthan gum is benefit to improve the baking quality of wholebarley fortified saltine crackers
Acoustic phonon transport through a double-bend quantum waveguide
In this work, using the scattering matrix method, we have investigated the
transmission coefficients and the thermal conductivity in a double-bend
waveguide structure. The transmission coefficients show strong resonances due
to the scattering in the midsection of a double-bend structure; the positions
and the widths of the resonance peaks are determined by the dimensions of the
midsection of the structure. And the scattering in the double-bend structure
makes the thermal conductivity decreases with the increasing of the temperature
first, then increases after reaches a minimum. Furthermore, the investigations
of the multiple double-bend structures indicate that the first additional
double-bend structure suppresses the transmission coefficient and the frequency
gap formed; and the additional double-bend structures determine the numbers of
the resonance peaks at the frequency just above the gap region. These results
could be useful for the design of phonon devices.Comment: 13 pages, 6 figures, elsart.cls is use
Smooth Particle Hydrodynamics-Based Characteristics of a Shaped Jet from Different Materials
The liner material is one of the key factors in the design of armor-piercing ammunition that effect the penetration efficiency. The performance of a shaped jet formed by the charge liner is determined by different properties of the material under the blasting action, in particular for the target with explosive reactive armor, which diminishes the penetration power by dispersing the shaped jet. The performance of shaped jet elements from different materials is studied, AUTODYN finite element software and smooth particle hydrodynamics method are employed to simulate the formation of shaped jet elements from the three materials: Cu, PTFE, and PTFE/Cu and their penetration into target plates, which was verified in the experiment. A shaped jet for a Cu liner is shown to be formed under the action of a detonation wave, while PTFE and PTFE/Cu materials generate a dispersive particle jet. The head velocity of a Cu jet is found to be the lowest, the penetration depth is the deepest, and the penetration hole size is the smallest; the velocity of a PTFE particle jet is the highest and the penetration depth is the shallowest, the penetration hole size takes the mid-position; the head velocity and penetration depth of a PTFE/Cu jet take the mid-position, while the penetration hole is the largest. The PTFE/Cu jet possesses higher penetration performance as compared to the PTFE jet, and its hole-opening capability is improved as compared to the Cu jet.Облицовочный материал один из ключевых факторов при создании бронебойных боеприпасов, оказывающий влияние на эффективность внедрения. Работоспособность кумулятивного заряда, формируемого его облицовкой, определяется различными свойствами материала в условиях взрывной нагрузки, в частности для мишени с элементами динамической защиты, которые уменьшают проникающую способность, рассеивая кумулятивный заряд. Изучены рабочие характеристики элементов кумулятивного заряда из различных материалов. Конечноэлементное программное обеспечение AUTODYN и метод гидродинамики гладких частиц используются при моделировании формирования этих элементов и их внедрении в пластинымишени из трех материалов: Cu, ПТФЭ и ПТФЭ/Сu, что было проверено экспериментально. Показано, что кумулятивный заряд для медной облицовки формируется под действием детонационной волны, тогда как ПТФЭ и ПТФЭ/Cu материалы генерируют струю распыленных частиц. Установлено, что в головной части скорость струи частиц Сu наименьшая, глубина внедрения наибольшая, а размер отверстий наименьший, скорость струи частиц ПТФЭ наибольшая, глубина внедрения наименьшая, размер отверстий занимает среднее положение, скорость и глубина внедрения струи частиц ПТФЭ/Сu занимают среднее положение, тогда как отверстия имеют наибольший размер. Струя частиц ПТФЭ/Сu обладает более высокой эффективностью внедрения по сравнению со струей ПТФЭ, а ее проникающая способность выше, чем струи Cu.Облицювальний матеріал - один з ключових чинників при створенні бронебійних боєприпасів, який впливає на ефективність заглиблення. Працездатність кумулятивного заряду, який формується його облицюванням, визначається різними властивостями матеріалу в умовах вибухового навантаження, зокрема для мішені з елементами динамічного захисту, які зменшують проникаючу здатність, розсіюючи кумулятивний заряд. Вивчено робочі характеристики елементів кумулятивного заряду з різних матеріалів.
Скінчнноелементне програмне забезпечення AUTODYN і метод гідродинаміки гладких частинок використовуються при моделюванні формування цих елементів і їх впровадженні в пластини-мішені з трьох матеріалів: Cu, ПТФЕ і ПТФЕ / Cu, що було перевірено експериментально. Показано, що кумулятивний заряд для мідного облицювання формується під дією детонаційної хвилі, тоді як ПТФЕ і ПТФЕ / Cu матеріали генерують струмінь розпорошених частинок. Встановлено, що в головній частині швидкість струменя частинок Cu найменша, глибина заглиблення найбільша, а розмір отворів менший, швидкість струменя частинок ПТФЕ найбільша, глибина заглиблення найменша, розмір отворів займає середнє положення, швидкість і глибина заглиблення струменя частинок ПТФЕ / Cu займають середнє положення, тоді як отвори мають найбільший розмір. Струмінь частинок ПТФЕ / Cu володіє більш високою ефективністю заглиблення в порівнянні зі струменем ПТФЕ, а її проникаюча здатність вище, ніж струменя Cu
Unraveling the Rich Fragmentation Dynamics Associated with S-H Bond Fission Following Photoexcitation of H <sub>2</sub>S at Wavelengths ∼129.1 nm
H2S is being detected in the atmospheres of ever more interstellar bodies, and photolysis is an important mechanism by which it is processed. Here, we report H Rydberg atom time-of-flight measurements following the excitation of H2S molecules to selected rotational (JKaKc′) levels of the 1B1 Rydberg state associated with the strong absorption feature at wavelengths of λ ∼ 129.1 nm. Analysis of the total kinetic energy release spectra derived from these data reveals that all levels predissociate to yield H atoms in conjunction with both SH(A) and SH(X) partners and that the primary SH(A)/SH(X) product branching ratio increases steeply with ⟨Jb2⟩, the square of the rotational angular momentum about the b-inertial axis in the excited state. These products arise via competing homogeneous (vibronic) and heterogeneous (Coriolis-induced) predissociation pathways that involve coupling to dissociative potential energy surfaces (PES(s)) of, respectively, 1A″ and 1A′ symmetries. The present data also show H + SH(A) product formation when exciting the JKaKc′ = 000 and 111 levels, for which ⟨Jb2⟩ = 0 and Coriolis coupling to the 1A′ PES(s) is symmetry forbidden, implying the operation of another, hitherto unrecognized, route to forming H + SH(A) products following excitation of H2S at energies above ∼9 eV. These data can be expected to stimulate future ab initio molecular dynamic studies that test, refine, and define the currently inferred predissociation pathways available to photoexcited H2S molecules
Aerosol particles at a high-altitude site on the Southeast Tibetan Plateau, China: Implications for pollution transport from South Asia
Bulk aerosol samples were collected from 16 July 2008 to 26 July 2009 at Lulang, a high-altitude (>3300m above sea level) site on the southeast Tibetan Plateau (TP); objectives were to determine chemical characteristics of the aerosol and identify its major sources. We report aerosol (total suspended particulate, TSP) mass levels and the concentrations of selected elements, carbonaceous species, and water-soluble inorganic ions. Significant buildup of aerosol mass and chemical species (organic carbon, element carbon, nitrate, and sulfate) occurred during the premonsoon, while lower concentrations were observed during the monsoon. Seasonal variations in aerosol and chemical species were driven by precipitation scavenging and atmospheric circulation. Two kinds of high-aerosol episodes were observed: one was enriched with dust indicators (Fe and Ca2+), and the other was enhanced with organic and elemental carbon (OC and EC), SO42−, NO3−, and Fe. The TSP loadings during the latter were 3 to 6 times those on normal days. The greatest aerosol optical depths (National Centers for Environmental Protection/National Center for Atmospheric Research reanalysis) occurred upwind, in eastern India and Bangladesh, and trajectory analysis indicates that air pollutants were transported from the southwest. Northwesterly winds brought high levels of natural emissions (Fe, Ca2+) and low levels of pollutants (SO42−, NO3−, K+, and EC); this was consistent with high aerosol optical depths over the western deserts and Gobi. Our work provides evidence that both geological and pollution aerosols from surrounding regions impact the aerosol population of the TP
Effects of hydrogen relative humidity on the performance of an air-breathing PEM fuel cell : a numerical study
Purpose
The purpose of this paper is to investigate the effects of hydrogen humidity on the performance of air-breathing proton exchange membrane (PEM) fuel cells.
Design/methodology/approach
An efficient mathematical model for air-breathing PEM fuel cells has been built in MATLAB. The sensitivity of the fuel cell performance to the heat transfer coefficient is investigated first. The effect of hydrogen humidity is also studied. In addition, under different hydrogen humidities, the most appropriate thickness of the gas diffusion layer (GDL) is investigated.
Findings
The heat transfer coefficient dictates the performance limiting mode of the air-breathing PEM fuel cell, the modelled air-breathing fuel cell is limited by the dry-out of the membrane at high current densities. The performance of the fuel cell is mainly influenced by the hydrogen humidity. Besides, an optimal cathode GDL and relatively thinner anode GDL are favoured to achieve a good performance of the fuel cell.
Practical implications
The current study improves the understanding of the effect of the hydrogen humidity in air-breathing fuel cells and this new model can be used to investigate different component properties in real designs.
Originality/value
The hydrogen relative humidity and the GDL thickness can be controlled to improve the performance of air-breathing fuel cells
Rotating day and night disturb growth hormone secretion profiles, body energy metabolism, and insulin levels in mice
Background: Insulin and growth hormone (GH) - 2 vital metabolic regulatory hormones - regulate glucose, lipid, and energy metabolism. These 2 hormones determine substrate and energy metabolism under different living conditions. Shift of day and night affects the clock system and metabolism probably through altered insulin and GH secretion. Methods: Five-week-old male mice were randomly assigned to a rotating light (RL) group (3-day normal light/dark cycle followed by 4-day reversed light/dark cycle per week) and normal light (NL) group. Body weight and food intake were recorded every week. Series of blood samples were collected for pulsatile GH analysis, glucose tolerance test, and insulin tolerance test at 9, 10, and 11 weeks from the start of intervention, respectively. Indirect calorimetric measurement was performed, and body composition was tested at 12 weeks. Expressions of energy and substrate metabolism-related genes were evaluated in pituitary and liver tissues at the end of 12-week intervention. Results: The RL group had an increased number of GH pulsatile bursts and reduced GH mass/burst. RL also disturbed the GH secretion regularity and mode. It suppressed insulin secretion, which led to a disturbed insulin/GH balance. It was accompanied by the reduced metabolic flexibility and modified gene expression involved in energy balance and substrate metabolism. Indirect calorimeter recording revealed that RL decreased the respiratory exchange ratio (RER) and oxygen consumption at the dark phase, which resulted in an increase in fat mass and free fatty acid levels in circulation. Conclusion: RL disturbed pulsatile GH secretion and decreased insulin secretion in male mice with significant impairment in energy, substrate metabolism, and body composition.Diabetes mellitus: pathophysiological changes and therap
Sensitive and fast identification of bacteria in blood samples by immunoaffinity mass spectrometry for quick BSI diagnosis
Bloodstream infections rank among the most serious causes of morbidity and mortality in hospitalized patients, partly due to the long period (up to one week) required for clinical diagnosis. In this work, we have developed a sensitive method to quickly and accurately identify bacteria in human blood samples by combining optimized matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS) and efficient immunoaffinity enrichment/separation. A library of bacteria reference mass spectra at different cell numbers was firstly built. Due to a reduced sample spot size, the reference spectra could be obtained from as few as 10 to 10(2) intact bacterial cells. Bacteria in human blood samples were then extracted using antibodies-modified magnetic beads for MS fingerprinting. By comparing the sample spectra with the reference spectra based on a cosine correlation, bacteria with concentrations as low as 500 cells per mL in blood serum and 8000 cells per mL in whole blood were identified. The proposed method was further applied to positive clinical blood cultures (BCs) provided by a local hospital, where Escherichia coli and Staphylococcus aureus were identified. Because of the method's high sensitivity, the BC time required for diagnosis can be greatly reduced. As a proof of concept, whole blood spiked with a low initial concentration (10(2) or 10(3) cells per mL) of bacteria was cultured in commercial BC bottles and analysed by the developed method after different BC times. Bacteria were successfully identified after 4 hours of BC. Therefore, an entire diagnostic process could be accurately accomplished within half a day using the newly developed method, which could facilitate the timely determination of appropriate anti-bacterial therapy and decrease the risk of mortality from bloodstream infections
Improved Eavesdropping Detection Strategy in Quantum Direct Communication Protocol Based on Four-particle GHZ State
In order to improve the eavesdropping detection efficiency in two-step
quantum direct communication protocol, an improved eavesdropping detection
strategy using four-particle GHZ state is proposed, in which four-particle GHZ
state is used to detect eavesdroppers. During the security analysis, the method
of the entropy theory is introduced, and two detection strategies are compared
quantitatively by using the constraint between the information which
eavesdropper can obtain and the interference introduced. If the eavesdroppers
intend to obtain all information, the eavesdropping detection rate of the
original two-step quantum direct communication protocol by using EPR pair block
as detection particles is 50%; while the proposed strategy's detection rate is
88%. In the end, the security of the proposed protocol is discussed. The
analysis results show that the eavesdropping detection strategy presented is
more secure.Comment: 14 pages, 3 figures. arXiv admin note: substantial text overlap with
arXiv:quant-ph/0308173 by different author
Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog
We present extensive 75As NMR and NQR data on the superconducting arsenides
PrFeAs0.89F0.11 (Tc=45 K), LaFeAsO0.92F0.08 (Tc=27 K), LiFeAs (Tc = 17 K) and
Ba0.72K0.28Fe2As2 (Tc = 31.5 K) single crystal, and compare with the nickel
analog LaNiAsO0.9F0.1 (Tc=4.0 K) . In contrast to LaNiAsO0.9F0.1 where the
superconducting gap is shown to be isotropic, the spin lattice relaxation rate
1/T1 in the Fe-arsenides decreases below Tc with no coherence peak and shows a
step-wise variation at low temperatures. The Knight shift decreases below Tc
and shows a step-wise T variation as well. These results indicate spinsinglet
superconductivity with multiple gaps in the Fe-arsenides. The Fe
antiferromagnetic spin fluctuations are anisotropic and weaker compared to
underdoped copper-oxides or cobalt-oxide superconductors, while there is no
significant electron correlations in LaNiAsO0.9F0.1. We will discuss the
implications of these results and highlight the importance of the Fermi surface
topology.Comment: 6 pages, 11 figure
- …