24 research outputs found

    Thermal Ablation Modeling for Silicate Materials

    Get PDF
    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions

    Thermal Ablation Modeling for Silicate Materials

    Get PDF
    A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2)

    Evaluation of Finite-Rate Gas/Surface Interaction Models for a Carbon Based Ablator

    Get PDF
    Two sets of finite-rate gas-surface interaction model between air and the carbon surface are studied. The first set is an engineering model with one-way chemical reactions, and the second set is a more detailed model with two-way chemical reactions. These two proposed models intend to cover the carbon surface ablation conditions including the low temperature rate-controlled oxidation, the mid-temperature diffusion-controlled oxidation, and the high temperature sublimation. The prediction of carbon surface recession is achieved by coupling a material thermal response code and a Navier-Stokes flow code. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and Ablation Program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting full Navier-Stokes equations using Data Parallel Line Relaxation method. Recession analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities with heat fluxes ranging from 45 to 1100 wcm2 are performed and compared with data for model validation. The ablating material used in these arc-jet tests is Phenolic Impregnated Carbon Ablator. Additionally, computational predictions of surface recession and shape change are in good agreement with measurement for arc-jet conditions of Small Probe Reentry Investigation for Thermal Protection System Engineering

    Implicit Coupling Approach for Simulation of Charring Carbon Ablators

    Get PDF
    This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumptio

    Ablation, Thermal Response, and Chemistry Program for Analysis of Thermal Protection Systems

    Get PDF
    In previous work, the authors documented the Multicomponent Ablation Thermochemistry (MAT) and Fully Implicit Ablation and Thermal response (FIAT) programs. In this work, key features from MAT and FIAT were combined to create the new Fully Implicit Ablation, Thermal response, and Chemistry (FIATC) program. FIATC is fully compatible with FIAT (version 2.5) but has expanded capabilities to compute the multispecies surface chemistry and ablation rate as part of the surface energy balance. This new methodology eliminates B' tables, provides blown species fractions as a function of time, and enables calculations that would otherwise be impractical (e.g. 4+ dimensional tables) such as pyrolysis and ablation with kinetic rates or unequal diffusion coefficients. Equations and solution procedures are presented, then representative calculations of equilibrium and finite-rate ablation in flight and ground-test environments are discussed

    Effects of Non-Equilibrium Chemistry and Darcy-Forchheimer Flow of Pyrolysis Gas for a Charring Ablator

    Get PDF
    The Fully Implicit Ablation and Thermal Response code, FIAT, simulates pyrolysis and ablation of thermal protection materials and systems. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid. This work describes new modeling capabilities that are added to a special version of FIAT. These capabilities include a time-dependent pyrolysis gas flow momentum equation with Darcy-Forchheimer terms and pyrolysis gas species conservation equations with finite-rate homogeneous chemical reactions. The total energy conservation equation is also enhanced for consistency with these new additions. Parametric studies are performed using this enhanced version of FIAT. Two groups of analyses of Phenolic Impregnated Carbon Ablator (PICA) are presented. In the first group, an Orion flight environment for a proposed Lunar-return trajectory is considered. In the second group, various test conditions for arcjet models are examined. The central focus of these parametric studies is to understand the effect of pyrolysis gas momentum transfer on PICA material in-depth thermal responses with finite-rate, equilibrium, or frozen homogeneous gas chemistry. Results are presented, discussed, and compared with those predicted by the baseline PICA/FIAT ablation and thermal response model developed by the Orion Thermal Protection System Advanced Development Project

    Validation of a Three-Dimensional Ablation and Thermal Response Simulation Code

    Get PDF
    The 3dFIAT code simulates pyrolysis, ablation, and shape change of thermal protection materials and systems in three dimensions. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid system to simulate the shape change due to surface recession. This work is the first part of a code validation study for new capabilities that were added to 3dFIAT. These expanded capabilities include a multi-block moving grid system and an orthotropic thermal conductivity model. This paper focuses on conditions with minimal shape change in which the fluid/solid coupling is not necessary. Two groups of test cases of 3dFIAT analyses of Phenolic Impregnated Carbon Ablator in an arc-jet are presented. In the first group, axisymmetric iso-q shaped models are studied to check the accuracy of three-dimensional multi-block grid system. In the second group, similar models with various through-the-thickness conductivity directions are examined. In this group, the material thermal response is three-dimensional, because of the carbon fiber orientation. Predictions from 3dFIAT are presented and compared with arcjet test data. The 3dFIAT predictions agree very well with thermocouple data for both groups of test cases

    Radiation Modeling for the Reentry of the Hayabusa Sample Return Capsule

    Get PDF
    Predicted shock-layer emission signatures during the reentry of the Japanese Hayabusa capsule are presented and compared with flight measurements conducted during an airborne observation mission in NASA's DC-8 Airborne Laboratory. For selected altitudes at 11 points along the flight trajectory of the capsule, lines of sight were extracted from flow field solutions computed using the in-house high-fidelity CFD code, DPLR. These lines of sight were used as inputs for the line-by-line radiation code NEQAIR, and emission spectra of the air plasma were computed in the wavelength range from 300 nm to 1600 nm, a range which covers all of the different experiments onboard the DC-8. In addition, the computed flow field solutions were post-processed with the material thermal response code FIAT, and the resulting surface temperatures of the heat shield were used to generate thermal emission spectra based on Planck radiation. Both spectra were summed and integrated over the flow field. The resulting emission at each trajectory point was propagated to the DC-8 position and transformed into incident irradiance to be finally compared with experimental data

    Arcjet Ablation of Stony and Iron Meteorites

    Get PDF
    A test campaign was conducted placing meteorites in the 60 MW plasma Arcjet Interaction Heating Facility at NASA Ames Research Center, with the aim to achieve flight-relevant conditions for asteroid impacts in Earth's atmosphere and to provide insight into how meteoritic materials respond to extreme entry heating environments. The test conditions at heat flux of 4000 W/m2 and 140 kPa stagnation pressure are comparable to those experienced by a 30-meter diameter asteroid moving at 20 km/s velocity at 65 km altitude in the Earth's atmosphere. Test objects were a stony type H5 ordinary chondrite (Tamdakht) and an iron type IAB-MG meteorite (Campo Del Cielo), and included the terrestrial analogs Dense Flood Basalt and Fused Silica. All samples were exposed for only a few seconds in the plasma stream. Significant melt flow and vaporization was observed for both the stony and iron meteorites during exposure. Mass loss from spallation of fragments was also observed. Vapor emitted atomic lines from alkali metals and iron, but did not emit the expected MgO molecular band emissions. The meteoritic melts flowed more rapidly, indicating lower viscosity, than those of Fused Silica. The surface recession was mapped. The effective heat of ablation derived from this showed that ablation under these conditions occurred in the melt-dominated regime. Ablation parameters have an effect on ground damage estimates. A bias in ablation parameters towards the melt-dominated regime would imply that impacting asteroids survive to lower altitude, and therefore could possibly have airbursts with a larger ground damage footprint

    Arcjet Ablation of Stony and Iron Meteorites

    Get PDF
    A test campaign was conducted placing meteorites in the 60 MW plasma Arcjet Interaction Heating Facility at NASA Ames Research Center, with the aim to achieve flight-relevant conditions for asteroid impacts in Earth's atmosphere and to provide insight into how meteoritic materials respond to extreme entry heating environments. The test conditions at heat flux of 4000 W/m2 and 140 kPa stagnation pressure are comparable to those experienced by a 30-meter diameter asteroid moving at 20 km/s velocity at 65 km altitude in the Earth's atmosphere. Test objects were a stony type H5 ordinary chondrite (Tamdakht) and an iron type IAB-MG meteorite (Campo Del Cielo), and included the terrestrial analogs Dense Flood Basalt and Fused Silica. All samples were exposed for only a few seconds in the plasma stream. Significant melt flow and vaporization was observed for both the stony and iron meteorites during exposure. Mass loss from spallation of fragments was also observed. Vapor emitted atomic lines from alkali metals and iron, but did not emit the expected MgO molecular band emissions. The meteoritic melts flowed more rapidly, indicating lower viscosity, than those of Fused Silica. The surface recession was mapped. The effective heat of ablation derived from this showed that ablation under these conditions occurred in the melt-dominated regime. Ablation parameters have an effect on ground damage estimates. A bias in ablation parameters towards the melt-dominated regime would imply that impacting asteroids survive to lower altitude, and therefore could possibly have airbursts with a larger ground damage footprint
    corecore