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A general thermal ablation model for silicates is proposed. The model includes the mass losses through 

the balance between evaporation and condensation, and through the moving molten layer driven by surface 

shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid 

and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axi-symmetric 

computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, 

with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to 

predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available 

data for model validation, and parametric studies will also be performed for meteoroid earth entry 

conditions. 

Nomenclature 

B’ = normalized ablation rate 

Cp = specific heat, J/kg-K 

CH = heat transfer coefficient, J/m2-s-K 

CM = mass transfer coefficient, kg/m2-s 

D = diffusion coefficient, m2/s 

E = total internal energy, J/m3 

h  = enthalpy, J/kg 

ℎ̅       = 
𝜌𝑣ℎ𝑣−𝜌𝑐ℎ𝑐

𝜌𝑣−𝜌𝑐
, J/kg 
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Hr = recovery enthalpy, J/kg 

k = thermal conductivity of solid, W/m-K 

M = molecular weight, kg/kmol 

m  = mass flux, kg/m2-s 

p = pressure, Pa 

pe = saturated vapor pressure, Pa 

q = heat flux, W/m2 

condq  = in-depth conductive heat flux at surface, W/m2 

convq  = convective heat flux at surface, W/m2 

rwq  = radiative heat flux at surface, W/m2
 

QT-v = translation-vibration energy exchange rate, W/m3

 

r = radius, cm 

rc = corner radius of the model, cm 

rn = nose radius of the model, cm 

R  = universal gas constant, 8.3143 J/ mol-K 

T  = temperature, K  

Δ maxT  = maximum allowed change on surface temperature, K 

T  = environment temperature, K 

u = flow velocity, m/s 

v  = speed of moving grid, m/s 

v  = thermal velocity, m/s 

x, y = Cartesian coordinate system, m 

ŵ  = source term of gas-surface interactions, kmol/m2-s 

  = absorptance 

γ = evaporation/condensation sticking coefficient 

δ = effective thickness of moving liquid layer, cm 
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  = emissivity 

  = total density, kg/m3 

λ = blowing reduction coefficient 

µ = viscosity, Pa-s 

  = Stefan-Boltzmann constant, W/(m2-K4) 

τ = shear force, Pa 

subscripts 

1 = unblown 

c  = char 

g  = pyrolysis gas 

i, j = direction components 

l = molten layer 

n = surface species 

s = gas species 

v = vapor or vibrational energy 

w  = wall 

I. Introduction  

Chondrites are the most common type of meteoroid that falls to Earth. Most chondrites are rich in silicate materials. 

To determine the physical and chemical nature of the meteoroid, one must understand the interaction between the 

meteoroid and the atmosphere. In the classic meteor ablation model [1], ablation begins when the surface of the 

meteoroid reaches the boiling temperature, and then the temperature is assumed to remain constant. Classic meteor 

ablation theory assumes that the mass loss is proportional to the kinetic energy imparted to the meteoroid. Meteoroids 

may lose mass not only though evaporation, but also through spraying of the molten layer on the surface. To simulate 

this effect, the classic ablation model includes a mass loss term which is an inverse tangent function of the difference 

between surface temperature and melting point. The other commonly used mass loss model for meteoroid is the mass 

loss rate computed using Langmuir evaporation assuming the condensation rate is negligibly small. [2] 
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In this work, we propose a general thermal ablation model for silicate materials. The proposed ablation model 

includes the mass losses through the balance between evaporation and condensation, and through the moving of molten 

layer driven by surface shear force and pressure gradient. This proposed ablation model is implemented in the Two-

dimensional Implicit Thermal AblatioN simulation program, TITAN [3], which was developed for the computation 

of Thermal Protection System materials under hypersonic entry conditions.  The ablation characteristics of silicates 

are the same as those of silica and metal, which are the commonly used materials for the Thermal Protection Systems 

for NASA’s space missions. Hence, this ablation model can be applied for both the meteoroid and the glassy or 

metallic components of spacecraft Thermal Protection Systems. The time dependent axi-symmetric simulations for 

mass loss and shape change predictions are performed by coupling the fluid dynamics code, Data-Parallel Line 

Relaxation (DPLR) [4], and the material response code, TITAN. The predictions will be compared with available data 

for model validation. [5] Parametric studies under meteoroid entry conditions will be performed to gain further 

understanding on the ablation response of silicate materials to guide the direction of future work. 

II. Thermal Ablation Model 

The mechanism of thermal ablation for silicate materials includes the motion of molten layer driven by surface 

shear force and surface pressure gradient, 𝑚̇𝑙, and the balance between evaporation and condensation at the surface, 

𝑚̇𝑣.  

When subjected to aerothermodynamics heating and shear forces, the molten material will form a flowing liquid 

layer over the solid surface. The equations governing the liquid layer are nearly the same as for the case of an 

incompressible gas boundary layer, the difference being a variation of viscosity with temperature. For an axi-

symmetric geometry, if the inertia force in momentum equations can be neglected, the momentum and continuity 

equations of molten layer can be integrated to obtain the mass loss rate due to the motion of liquid layer [6]: 

          𝑚̇𝑙 =
𝜌𝑐

𝑟

𝑑

𝑑𝑥
{

𝑟

𝜇𝑤
(𝜏𝑤𝛿2 − 2

𝑑𝑃𝑤

𝑑𝑥
𝛿3)}           (1) 

The viscosity of molten layer usually increases exponentially with a decrease in temperature i.e. 

               𝜇 = 𝑒
𝑎

𝑇
−𝑏

              (2) 

Here a and b are constants. The “effective thickness” of a moving liquid layer, δ, is defined as the distance at which 

the viscosity increases by one exponential factor and it’s assumed that the thickness of the moving liquid layer is thin 

in comparison with the thickness of thermal layer. 
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 The evaporation rate of a surface species can be computed from its saturated vapor pressure, 𝑃𝑛
𝑒 , and its 

condensation rate from the gas phase can be computed if the species partial surface pressure, 𝑃𝑛 , is known [7] :  

          𝑚̇𝑣 = ∑
𝑣̅𝑛

4𝑅𝑇𝑛 𝛾𝑀𝑛(𝑃𝑛
𝑒 − 𝑃𝑛)             (3) 

Here 𝑣̅𝑛 is the thermal speed of surface species n, and 𝛾 is the evaporation/condensation (or sticking) coefficient.  

 If the ambient gas pressure is very low, the condensation rate is thus negligible. Then the computation of  𝑚̇𝑣 can 

be simplified to  

           𝑚̇𝑣 = ∑
𝑣̅𝑛

4𝑅𝑇𝑛 𝛾𝑀𝑛𝑃𝑛
𝑒               (4) 

The saturated vapor pressure can be computed using a chemical equilibrium code, such as MAGMA [8]. The 

MAGMA code was developed specifically for the composition of meteoroids or earth crust. Forsterite, Mg2SiO4(s), 

is one of the silicates which we are interested in this study. In MAGMA, Mg2SiO4(l) is assumed to undergo pseudo-

reaction to form pseudo-species, MgO(l) and SiO2(l) which then becomes vapor, MgO(g) and SiO2(g), as the 

temperature increases. The computed saturated vapor pressures as function of surface temperature for MgO(l) and 

SiO2(l) are presented in Fig. 1a.   

If a continuous flow is formed over the surface, the species partial pressure at the surface has to be calculated using 

a finite-rate reacting flow solver. The gas phase chemical species and their chemical reactions for ablation products 

have to be considered in the reacting flow simulation [9]. A finite-rate reacting flow simulation with all the chemical 

species of ablations products is complicated and extremely CPU-time consuming. However, if the chemical 

equilibrium condition can be established at the surface, the net mass loss rate due to evaporation/condensation process 

can be pre-calculated, i.e. the 𝐵′ tables, using a chemical equilibrium code, such as MAT [10]. The computed 𝐵𝐶
′  of 

Mg2SiO4 as a function of surface temperature and pressure are presented in Fig. 1b. The mass loss due to 

evaporation/condensation for a chemical equilibrium surface is written as 

              𝑚̇𝑣 = 𝐶𝑀𝐵𝐶
′              (5) 

The total mass loss rate due to thermal ablation, 𝑚̇𝑐, is thus expressed as 

              𝑚̇𝑐 = 𝑚̇𝑣 + 𝑚̇𝑙             (6) 
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Figure 1a: Saturated vapor pressures for SiO2 and MgO. 

 

 

Figure 1b: The B’ tables at various surface pressures for Forsterite. 
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III. Computational Methods 

 In this section we describe the relevant equations of the TITAN and DPLR codes and the coupling procedure 

employed to obtain the solutions presented in this work. 

A. Material Ablation and Thermal Response Code 

The governing equations in TITAN, which include energy conservation, a three-component decomposition model, 

and the surface energy balance, are solved with a moving grid system to simulate the shape change due to surface 

recession [3]. The equations are converted from a Cartesian coordinate system (x,y) into a general body-fitted 

coordinate system () and then discretized using a finite-volume method. A moving grid technique was 

implemented to solve simulations with surface recession. 

The internal energy balance is a transient thermal conduction equation with additional pyrolysis terms: 

    𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= ∇ ∙ (𝑘∇𝑇) − (ℎ𝑔 − ℎ̅)∇ ∙ 𝑚̇𝑔 − 𝑚̇𝑔 ∙ ∇ℎ𝑔 + 𝜌𝑐𝑝𝑣 ∙ ∇𝑇        (7) 

The individual terms in Equation (1) may be interpreted as follows: the rate of storage of sensible energy, the net rate 

of thermal conductive heat flux, the pyrolysis energy-consumption rate, the net rate of energy convected by pyrolysis 

gas, and the convection rate of sensible energy due to coordinate system movement. There is no pyrolysis gas flow 

inside the silicate materials, 𝑚̇𝑔 = 0, and thus the second and the third terms in Equation (7) are equal to zero. 

Conditions at the ablating surface are determined by the aerothermal environment and by chemical interactions 

between the boundary layer gas, the pyrolysis gas, the ablation products, and the chemical constituents of the surface 

material. TITAN employs a convective transfer-coefficient form of the surface energy balance: 

 𝐶𝐻(𝐻𝑟 − ℎ𝑤) + 𝑚̇𝑐ℎ𝑐 + 𝑚̇𝑔ℎ𝑔 − (𝑚̇𝑐 + 𝑚̇𝑔)ℎ𝑤 + 𝛼𝑤𝑞𝑟𝑤 − 𝜎𝜀𝑤(𝑇𝑤
4 − 𝑇∞

4 ) − 𝑞𝑐𝑜𝑛𝑑 = 0   (8) 

Here eueCH is the convective heat transfer coefficient, Hr is the recovery enthalpy, and all other quantities are defined 

at the ablating surface. The first term in Equation (8) is the convective heat flux, the second through fourth terms 

represent the chemical energy released (or absorbed) by ablation, the fifth and sixth terms are radiation absorption and 

emission, respectively, and the final term is the rate of heat conduction into the TPS. This equation has been simplified 

from the general form by assuming equal diffusion coefficients within the boundary layer and equal Stanton numbers 

for heat and mass transfer. These are standard assumptions for most entry environments and TPS materials. If these 

assumptions are not applicable, a more general form of the surface energy balance may be used. Flow-field radiation 

is reflected or absorbed at the surface, but not transmitted. 
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A blowing correction accounts for the reduction in heat transfer coefficient due to the injection of gases from 

pyrolysis and surface ablation into the boundary layer. The blowing correction equation used by TITAN is: 

       
𝐶𝐻

𝐶𝐻1
=

ln (1+2𝜆𝐵′)

2𝜆𝐵′  𝑤ℎ𝑒𝑟𝑒 𝐵′ =
(𝑚̇𝑐+𝑚̇𝑔)

𝐶𝑀
             (9) 

 

Here  is the blowing reduction parameter, and CH /CH1 is the ratio of the blown (ablating) to the unblown (non-

ablating) heat transfer coefficients. For laminar flow,  is 0.5 or higher, depending on the geometry and the ratio of 

molecular weights of the injected and boundary-layer-edge gas. For transitional or turbulent flow, smaller values of  

are used. B' is the non-dimensional mass blowing rate at the surface. Unless noted otherwise, a blowing reduction 

parameter of 0.5 is used for the calculations presented herein. By assuming that the momentum boundary layer 

thickness is the same as the thermal boundary layer thickness, the surface shear force for an ablating surface is 

approximated by the following equation: 

        
𝜏𝑤

𝜏𝑤1
=

𝐶𝐻

𝐶𝐻1
                    (10) 

 

B. Fluid Dynamics Code 

The Navier-Stokes solver, DPLR, is used to estimate the hypersonic aero-heating distribution over a blunt body 

[4]. The governing equations may be characterized as representing a flow-field in thermal and chemical non-

equilibrium. The DPLR code solves the time-dependent conservation equations of mass, momentum, and energy 

within the flow-field. The species mass conservation equation is given by: 

          
𝜕𝜌𝑠

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑠𝑢𝑗) = −

𝜕

𝜕𝑥𝑗
(𝜌𝑠𝐷𝑠𝑗) + 𝑤𝑠           (11) 

The total momentum conservation is written as: 

            
𝜕

𝜕𝑡
(𝜌𝑢𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗) = −

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
           (12) 

The vibrational and total energy equations are written as: 

          
𝜕𝐸𝑣

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝐸𝑣𝑢𝑗) = −

𝜕

𝜕𝑥𝑗
(𝑞𝑣𝑗) + 𝑄𝑇−𝑣          (13) 

    
𝜕𝐸

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
((𝐸 + 𝑝)𝑢𝑗) = −

𝜕

𝜕𝑥𝑗
(𝑞𝑗 + 𝑞𝑣𝑗) −

𝜕

𝜕𝑥𝑗
(𝑢𝑖𝜏𝑖𝑗) − ∑

𝜕

𝜕𝑥𝑗

𝑛
𝑠=1 𝐷𝑠𝑗ℎ𝑠      (14) 

In DPLR, the Gauss-Seidel line relaxation method is modified to enable fast convergence for viscous flow with 

high parallel efficiency on massively parallel computers.  
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C. Fluid-Solid Coupling 

Coupling between the material response and flow codes is required for many multidimensional ablation 

simulations, because the magnitude and distribution of the surface heat flux, pressure, and shear force are very 

sensitive to shape change. The integration between TITAN and DPLR is based on a loosely coupled approach 

following the flowchart presented in Fig. 2 [11]. In this approach, all CFD solutions are computed for an unblown 

surface but use the ablated shape. Chemical equilibrium surface thermochemical interactions and blowing effects are 

incorporated in the material-response code by use of ablation tables, the surface energy balance with heat transfer 

coefficient, and the blowing reduction parameter, as described by Equations (8) and (9).  

The initial flow field and its associated surface heat flux, pressure, and shear are first computed by DPLR. For 

each surface point, heat transfer coefficient, CH1, shear force, 𝜏𝑤1, and pressure, p, are calculated. Then shear force, 

pressure, and heat transfer coefficient are passed as boundary conditions to TITAN. A time-accurate ablation and 

thermal response computation is performed by TITAN. When the maximum surface temperature or recession meets a 

pre-specified limit, TITAN stops its computation and outputs the location of the ablated surface. A new CFD grid is 

then generated based on this ablated surface and estimated shock location, and a new steady-state flow solution is then 

calculated by DPLR. The pressure, shear force, and heat transfer coefficients are calculated for this new solution. The 

updated values for pressure, shear force, and heat transfer coefficients are input to TITAN for another run of time-

accurate ablation and in-depth thermal response. This procedure is repeated until TITAN reaches the specified final 

time. In each CFD run, the outer boundary of grid is aligned with the shock using an internal subroutine in DPLR, and 

the cell Reynolds number equal to 1 is enforced. The TITAN-DPLR coupling procedure is written in a UNIX/Linux 

script file. The test cases presented in this paper are computed on a Linux cluster system. 
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Figure 2. DPLR/TITAN shape change coupling methodology. 

 

IV. Results 

 The computations presented in this section include two parts. In the first part, ablation model validation will be 

performed. The ablation characteristics of silica (SiO2) are the same as those of silicate materials, and the thermal 

properties of quartz are well studied. Thus, quartz is one of the best candidate materials for our ablation model 

validation. The ablation data for quartz published in the work of Adams et al. [5] will be used to evaluate the accuracy 

of our ablation models.  The preliminary results performed by coupling DPLR and TITAN for a 10-deg half angle 

opaque quartz sphere-cone are presented in Figures 3. The history of surface contours is shown in Figure 3a, and the 

temperature contours at 25 seconds are presented in Figure 3b. Comparisons of stagnation point recession vs time 

between computation and data for the opaque and clear quartz models will be presented in the final paper. In the 

second part, the ablation simulations and parametric studies for Forsterite (Mg2SiO4) and typical chondritic material 

will be discussed. The flow environments used in the second part of computation are typical for the meteor earth entry. 

The maximum surface heat flux is in the order of MJ/cm2, and the maximum surface pressure is around hundreds bars. 

 



 

American Institute of Aeronautics and Astronautics 

11 

 

Figure 3a: Shape change as function of time 

 

Figure 3b: Temperature contours at time equal to 25 seconds 
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