165 research outputs found

    Young adults’ attitudes towards vaping content on Instagram: Qualitative interviews utilizing the associative imagery technique

    Get PDF
    Backgound: Vaping among young adults (18-24), increased 46% from 2017-2018, resulting in adverse health effects and vulnerability to nicotine dependence. Young adults spend three hours per day using social media, particularly Instagram, which is dominated by pro-vaping messages. Therefore, young adults’ exposure to vaping content can result in positive perceptions of vaping. Aim: Using the associative imagery technique, our goal was to understand the favorability of Instagram posts depicting aspects of vaping and how young adults relate to the images. Method: Semi-structured interviews were conducted with 24 young adults using the analytic induction method. Results: Three main themes emerged: 1) the power of color and visual aesthetics, meaning participants were drawn to colorful imagery; 2) distancing, when participants attempted to separate themselves from vaping culture; and 3) the environment influences perceptions, meaning participants paid attention to popular content, which enhanced its perceived credibility. Discussion: The type of social media platform and users' expectations are just as important as the vaping content. Attitudes of social vapers compared to hardcore vapers may indicate specific aspects of content perceived as appealing. Conclusions: Visually appealing vaping content impacts young adults, but they are hesitant to share content as to be labeled as a “vaper.

    Analysis of the Willingness and Factors Influencing the Residents to Choose Between Chinese Medicine and Western Medicine under the New Coronavirus Pandemic: A Study in Zhejiang Province Community Health Service Center

    Get PDF
    Objective: To understand the willingness of Chinese residents to choose between Chinese and Western medicine in the face of sudden outbreak, this study aims to investigate and analyze the willingness and factors influencing Chinese residents (taking Zhejiang Province as an example) to choose between Chinese and Western medicine under the new coronavirus pandemic. Methods: The present study performed a large-scale cross-sectional online survey among 666 random residents in Zhejiang Province. We used questionnaires to investigate the feedback form from residents seeking medical care. In addition, a multivariate logistic regression model was used to analyze the influence of gender, education, medical reimbursement, and age on the choice of Chinese and Western medicine. Results: Among the patients with mild disease, 55.9% patients chose traditional Chinese medicine, while 44.1% chose Western medicine. Moreover, the proportion of patients with severe diseases who chose traditional Chinese medicine was 7.0%, while the rate of Western medicine was 93.0%. Among the patients suffering from mild diseases, the proportion of men who chose traditional Chinese medicine (46.2%) was lower than that of women (53.8%). The usage of Chinese medicine was preferred among residents of all ages, income levels, and educational backgrounds. A total of 93.0% of patients who chose Western medicine for treatment were severely ill, and the residents with severe diseases preferred Western medicine to Chinese medicine. People with high education and young were more inclined toward Western medicine for treatment compared with Chinese medicine. It was noted that people paid most attention to the medical insurance reimbursement ratio, followed by the distance between the medical institution and the place of residence. Conclusion: The acceptance of Chinese medicine among patients has generally increased; however, gender, educational background, and income still exert a great influence on the choice between Chinese and Western medicine

    A Highly Sensitive Intensity-Modulated Optical Fiber Magnetic Field Sensor Based on the Magnetic Fluid and Multimode Interference

    Get PDF
    Fiber-optic magnetic field sensing is an important method of magnetic field monitoring, which is essential for the safety of civil infrastructures, especially for power plant. We theoretically and experimentally demonstrated an optical fiber magnetic field sensor based on a single-mode-multimode-single-mode (SMS) structure immersed into the magnetic fluid (MF). The length of multimode section fiber is determined based on the self-image effect through the simulation. Due to variation characteristics of the refractive index and absorption coefficient of MF under different magnetic fields, an effective method to improve the sensitivity of SMS fiber structure is realized based on the intensity modulation method. This sensor shows a high sensitivity up to 0.097 dB/Oe and a high modulation depth up to 78% in a relatively linear range, for the no-core fiber (NCF) with the diameter of 125 μm and length of 59.8 mm as the multimode section. This optical fiber sensor possesses advantages of low cost, ease of fabrication, high sensitivity, simple structure, and compact size, with great potential applications in measuring the magnetic field

    Selective Generation of Dopaminergic Precursors from Mouse Fibroblasts by Direct Lineage Conversion.

    Get PDF
    Degeneration of midbrain dopaminergic (DA) neurons is a key pathological event of Parkinson\u27s disease (PD). Limited adult dopaminergic neurogenesis has led to novel therapeutic strategies such as transplantation of dopaminergic precursors (DPs). However, this strategy is currently restrained by a lack of cell source, the tendency for the DPs to become a glial-restricted state, and the tumor formation after transplantation. Here, we demonstrate the direct conversion of mouse fibroblasts into induced DPs (iDPs) by ectopic expression of Brn2, Sox2 and Foxa2. Besides expression with neural progenitor markers and midbrain genes including Corin, Otx2 and Lmx1a, the iDPs were restricted to dopaminergic neuronal lineage upon differentiation. After transplantation into MPTP-lesioned mice, iDPs differentiated into DA neurons, functionally alleviated the motor deficits, and reduced the loss of striatal DA neuronal axonal termini. Importantly, no iDPs-derived astrocytes and neoplasia were detected in mouse brains after transplantation. We propose that the iDPs from direct reprogramming provides a safe and efficient cell source for PD treatment

    Transplanted adult human hepatic stem/progenitor cells prevent histogenesis of advanced hepatic fibrosis in mice induced by carbon tetrachloride

    Get PDF
    Transplantation of adult human hepatic stem/progenitor cells (hHSPCs) has been considered as an alternative therapy, replacing donor liver transplantation to treat liver cirrhosis. This study assessed the antifibrotic effects of hHSPCs in mice with fibrosis induced by carbon tetrachloride (CCl4) and examined the actions of hHSPCs on the fibrogenic activity of human hepatic stellate cells (HSCs) in a coculture system. Isolated hHSPCs expressed stem/progenitor cell phenotypic markers. Mice were given CCl4 (twice weekly for 7 weeks) and hHSPC transplantation weekly. CCl4 induced advanced fibrosis (bridging fibrosis and cirrhosis) in mice, which was prevented by hHSPC transplantation. The liver of hHSPC-transplanted mice showed only occasional short septa and focal parenchymal fibrosis, and a 50% reduction in hepatic collagen, assessed by Sirius red stain histomorphometry. Moreover, the proteins for α-smooth muscle actin (α-SMA) and collagen I were decreased. While α-SMA, collagen α1(I), and tissue inhibitor of metalloproproteinase-1 mRNAs were decreased, matrix metalloproteinase (MMP)-1 mRNA was increased, consistent with decreased fibrogenesis. MMP-2 and transforming growth factor-β were not affected. Alanine aminotransferase and aspartate aminotransferase were lower, suggesting improvement of liver function/damage. In coculture, hHSPCs elicited changes of α-SMA and fibrogenic molecules in HSCs similar to those observed in vivo, providing evidence for a functional link between hHSPCs and HSCs. A decreased HSC proliferation was noted. Thus, transplantation of hHSPCs prevents histogenesis of advanced liver fibrosis caused by CCl4. hHSPCs mediate downregulation of HSC activation coincident with modulation of fibrogenic molecule expression, leading to suppression of fibrogenesis both in vivo and in vitro

    Biochemical and Morphological Mechanisms Underlying the Performance and Preference of Fall Armyworm (Spodoptera frugiperda) on Wheat and Faba Bean Plants

    Full text link
    peer reviewedSpodoptera frugiperda (J. E. Smith), which attacked China in 2019, remains a significant threat to wheat production. Wheat–faba bean intercropping systems prevent damage caused by wheat aphids; however, the potential role in S. frugiperda control remains unclear. Here, the adaptability and preferences of S. frugiperda to wheat and its common intercropped plant, faba bean, were evaluated to implement an eco-friendly approach for S. frugiperda management. Their adaptability showed that both hosts could support S. frugiperda to complete their life cycle; however, the larvae performed worse on faba bean compared with on wheat. The biochemical analysis revealed that faba bean plants had lower contents of soluble sugars and total proteins but higher levels of phenolics and tannins than in wheat leaves. The gravid S. frugiperda preferred (during the preference assays) to oviposit on wheat rather than on faba bean plants in cage tests. The wheat odor was preferred over the faba bean odor in the Y-tube olfactometer bioassays. The morphological scanning electron microscopy (SEM) showed increased trichome density on wheat leaves. Therefore, the faba bean plants displayed antibiosis on larvae and were repellent to female moths, thus, suggesting that faba bean plants could serve as a push crop to be intercropped with wheat for S. frugiperda control for wheat fields

    Direct Conversion of Mouse Astrocytes Into Neural Progenitor Cells and Specific Lineages of Neurons

    Get PDF
    Background: Cell replacement therapy has been envisioned as a promising treatment for neurodegenerative diseases. Due to the ethical concerns of ESCs-derived neural progenitor cells (NPCs) and tumorigenic potential of iPSCs, reprogramming of somatic cells directly into multipotent NPCs has emerged as a preferred approach for cell transplantation. Methods: Mouse astrocytes were reprogrammed into NPCs by the overexpression of transcription factors (TFs) Foxg1, Sox2, and Brn2. The generation of subtypes of neurons was directed by the force expression of cell-type specific TFs Lhx8 or Foxa2/Lmx1a. Results: Astrocyte-derived induced NPCs (AiNPCs) share high similarities, including the expression of NPC-specific genes, DNA methylation patterns, the ability to proliferate and differentiate, with the wild type NPCs. The AiNPCs are committed to the forebrain identity and predominantly differentiated into glutamatergic and GABAergic neuronal subtypes. Interestingly, additional overexpression of TFs Lhx8 and Foxa2/Lmx1a in AiNPCs promoted cholinergic and dopaminergic neuronal differentiation, respectively. Conclusions: Our studies suggest that astrocytes can be converted into AiNPCs and lineage-committed AiNPCs can acquire differentiation potential of other lineages through forced expression of specific TFs. Understanding the impact of the TF sets on the reprogramming and differentiation into specific lineages of neurons will provide valuable strategies for astrocyte-based cell therapy in neurodegenerative diseases

    Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy.

    Get PDF
    Dominant mutations in glycyl-tRNA synthetase (GlyRS) cause a subtype of Charcot-Marie-Tooth neuropathy (CMT2D). Although previous studies have shown that GlyRS mutants aberrantly interact with Nrp1, giving insight into the disease\u27s specific effects on motor neurons, these cannot explain length-dependent axonal degeneration. Here, we report that GlyRS mutants interact aberrantly with HDAC6 and stimulate its deacetylase activity on α-tubulin. A decrease in α-tubulin acetylation and deficits in axonal transport are observed in mice peripheral nerves prior to disease onset. An HDAC6 inhibitor used to restore α-tubulin acetylation rescues axonal transport deficits and improves motor functions of CMT2D mice. These results link the aberrant GlyRS-HDAC6 interaction to CMT2D pathology and suggest HDAC6 as an effective therapeutic target. Moreover, the HDAC6 interaction differs from Nrp1 interaction among GlyRS mutants and correlates with divergent clinical presentations, indicating the existence of multiple and different mechanisms in CMT2D. Nat Commun 2018 Mar 8; 9(1):1007
    • …
    corecore